Integration of an Axially Continuous Graphene with Functional Metals for High‐Temperature Electrical Conductors

[1]  Lijie Zhong,et al.  Multi-Interface-Induced Thermal Conductivity Reduction and Thermoelectric Performance Improvement in a Cu–Ni Alloy , 2022, ACS Applied Energy Materials.

[2]  F. Perkins,et al.  An Axially Continuous Graphene–Copper Wire for High‐Power Transmission: Thermoelectrical Characterization and Mechanisms , 2021, Advanced materials.

[3]  K. Kappagantula,et al.  Macro Copper-Graphene Composites with Enhanced Electrical Conductivity , 2021, Journal of Alloys and Compounds.

[4]  In S. Kim,et al.  Copper-graphene heterostructure for back-end-of-line compatible high-performance interconnects , 2021, npj 2D Materials and Applications.

[5]  H. Jafarian,et al.  Fabrication of Cu-CuG nanocomposites with enhanced mechanical strength and reduced electrical resistivity , 2021 .

[6]  T. Wada,et al.  Novel hierarchical nanoporous graphene nanoplatelets with excellent rate capabilities produced via self-templating liquid metal dealloying , 2020 .

[7]  W. Nowak,et al.  The effect of surface preparation on high temperature oxidation of Ni, Cu and Ni-Cu alloy , 2019, Applied Surface Science.

[8]  Di Zhang,et al.  Ultrahigh Electrical Conductivity of Graphene Embedded in Metals , 2019, Advanced Functional Materials.

[9]  Mingwei Chen,et al.  Extraordinary tensile strength and ductility of scalable nanoporous graphene , 2019, Science Advances.

[10]  Dong Su Lee,et al.  Metal nanofibrils embedded in long free-standing carbon nanotube fibers with a high critical current density , 2018, NPG Asia Materials.

[11]  Dong Su Lee,et al.  Ultrastrong Graphene-Copper Core-Shell Wires for High-Performance Electrical Cables. , 2018, ACS nano.

[12]  Di Zhang,et al.  Simultaneously enhancing the strength, ductility and conductivity of copper matrix composites with graphene nanoribbons , 2017 .

[13]  Di Zhang,et al.  Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity , 2017 .

[14]  Lei Liu,et al.  Surface modification of nickel-aluminum bronze alloy with gradient Ni-Cu solid solution coating via thermal diffusion , 2017 .

[15]  C. Cserháti,et al.  On the miscibility gap of Cu-Ni system , 2016, 1611.07068.

[16]  C. Srivastava,et al.  Graphene as a diffusion barrier for isomorphous systems: Cu–Ni system , 2016 .

[17]  I. Cotton,et al.  Ni-Cu Interdiffusion and its Implication for Ageing in Ni-Coated Cu Conductors , 2015 .

[18]  Hee‐Tae Jung,et al.  Bulk scale growth of CVD graphene on Ni nanowire foams for a highly dense and elastic 3D conducting electrode , 2014 .

[19]  Feng Yan,et al.  Two-dimensional material membranes: an emerging platform for controllable mass transport applications. , 2014, Small.

[20]  E. Hug,et al.  Study of the intermetallic growth in copper-clad aluminum wires after thermal aging , 2014 .

[21]  Agnieszka Lekawa-Raus,et al.  Electrical Properties of Carbon Nanotube Based Fibers and Their Future Use in Electrical Wiring , 2014 .

[22]  A. Jensen,et al.  In Situ Observation of Cu–Ni Alloy Nanoparticle Formation by X‐Ray Diffraction, X‐Ray Absorption Spectroscopy, and Transmission Electron Microscopy: Influence of Cu/Ni Ratio , 2014 .

[23]  R. Schloegl,et al.  Introducing Carbon Diffusion Barriers for Uniform, High-Quality Graphene Growth from Solid Sources , 2013, Nano letters.

[24]  H. Sue,et al.  Facile decoration of Au nanoparticles on reduced graphene oxide surfaces via a one-step chemical functionalization approach , 2013 .

[25]  Takeo Yamada,et al.  One hundred fold increase in current carrying capacity in a carbon nanotube–copper composite , 2013, Nature Communications.

[26]  F. Xiong,et al.  Ballistic to diffusive crossover of heat flow in graphene ribbons , 2013, Nature Communications.

[27]  Lei Liu,et al.  An investigation of grain boundary diffusion and segregation of Ni in Cu in an electrodeposited Cu/Ni micro-multilayer system , 2012 .

[28]  E. Pop,et al.  Thermal properties of graphene: Fundamentals and applications , 2012, 1301.6181.

[29]  X. Duan,et al.  Graphene: An Emerging Electronic Material , 2012, Advanced materials.

[30]  Xi Zhang,et al.  Electrical conductivity and thermal stability of polypropylene containing well-dispersed multi-walled carbon nanotubes disentangled with exfoliated nanoplatelets , 2012 .

[31]  R. Ruoff,et al.  Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayers. , 2012, ACS nano.

[32]  Miaofang Chi,et al.  Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks. , 2012, Nano letters.

[33]  Carl W. Magnuson,et al.  Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. , 2010, ACS nano.

[34]  E. Pop,et al.  Heat conduction across monolayer and few-layer graphenes. , 2010, Nano letters.

[35]  C. Jia,et al.  Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications , 2010, Nanoscale research letters.

[36]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[37]  Guanxiong Liu,et al.  Ultraviolet Raman microscopy of single and multilayer graphene , 2009, 0903.1922.

[38]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.

[39]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[40]  Yihong Wu,et al.  Graphene thickness determination using reflection and contrast spectroscopy. , 2007, Nano letters.

[41]  A. M. Abdul-lettif,et al.  Investigation of interdiffusion in copper–nickel bilayer thin films , 2007 .

[42]  Lei Lu,et al.  Ultrahigh Strength and High Electrical Conductivity in Copper , 2004, Science.

[43]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[44]  R. A. Matula,et al.  Electrical Resistivity of Ten Selected Binary Alloy Systems , 1983 .

[45]  R. A. Matula Electrical resistivity of copper, gold, palladium, and silver , 1979 .

[46]  Yongsheng Chen,et al.  High ampacity of superhelix graphene/copper nanocomposite wires by a synergistic growth-twisting-drawing strategy , 2019, Carbon.

[47]  F. Ren,et al.  Review of Graphene as a Solid State Diffusion Barrier. , 2016, Small.

[48]  Y. Iijima,et al.  Determination of Intrinsic Diffusion Coefficients in a Wide Concentration Range of a Cu–Ni Couple by the Multiple Markers Method , 1982 .