Microstructures, thermophysical properties and corrosion behaviours of equiatomic five-component rare-earth monosilicates

[1]  Haibin Zhang,et al.  Preparation and phase evolution of high-entropy oxides A2B2O7 with multiple elements at A and B sites , 2021 .

[2]  M. Reece,et al.  Oxidation resistance of (Hf-Ta-Zr-Nb)C high entropy carbide powders compared with the component monocarbides and binary carbide powders , 2021 .

[3]  N. Padture,et al.  Low thermal conductivity in high-entropy rare-earth pyrosilicate solid-solutions for thermal environmental barrier coatings , 2021 .

[4]  Guo‐Jun Zhang,et al.  High-entropy thermal barrier coating of rare-earth zirconate: A case study on (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 prepared by atmospheric plasma spraying , 2020 .

[5]  R. Cioffi,et al.  A Simple and Effective Predictor to Design Novel Fluorite-Structured High Entropy Oxides (HEOs) , 2020, Acta Materialia.

[6]  X. Ren,et al.  High temperature corrosion of (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium–magnesium–aluminosilicate (CMAS) , 2020 .

[7]  P. Hopkins,et al.  Tailoring thermal properties of multi-component rare earth monosilicates , 2020 .

[8]  E. Opila,et al.  Thermochemical stability of Y 2 Si 2 O 7 in high‐temperature water vapor , 2020 .

[9]  T. Hussain,et al.  A review on environmental barrier coatings: History, current state of the art and future developments , 2020, Journal of the European Ceramic Society.

[10]  Jiemin Wang,et al.  Theoretical investigation of phonon contributions to thermal expansion coefficients for rare earth monosilicates RE2SiO5 (RE = Dy, Ho, Er, Tm, Yb and Lu) , 2020 .

[11]  W. Xu,et al.  High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: A novel high temperature stable thermal barrier material , 2020 .

[12]  X. Ren,et al.  A multicomponent γ-type (Gd1/6Tb1/6Dy1/6Tm1/6Yb1/6Lu1/6)2Si2O7 disilicate with outstanding thermal stability , 2020 .

[13]  E. Opila,et al.  Thermochemical stability and microstructural evolution of Yb2Si2O7 in high-velocity high-temperature water vapor , 2020 .

[14]  Jiaqiang Yan,et al.  The emergent field of high entropy oxides: Design, prospects, challenges, and opportunities for tailoring material properties , 2020 .

[15]  Yiguang Wang,et al.  Synthesis and structures of high-entropy pyrochlore oxides , 2020 .

[16]  Yiguang Wang,et al.  Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating , 2020 .

[17]  W. Xu,et al.  (Y0.25Yb0.25Er0.25Lu0.25)2(Zr0.5Hf0.5)2O7: A defective fluorite structured high entropy ceramic with low thermal conductivity and close thermal expansion coefficient to Al2O3 , 2020 .

[18]  Yanchun Zhou,et al.  High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion , 2020 .

[19]  Le Zhang,et al.  Water vapor corrosion behaviors of plasma sprayed RE2SiO5 (RE = Gd, Y, Er) coatings , 2020 .

[20]  Renkun Chen,et al.  From high-entropy ceramics to compositionally-complex ceramics: A case study of fluorite oxides , 2019, Journal of the European Ceramic Society.

[21]  M. Reece,et al.  Review of high entropy ceramics: design, synthesis, structure and properties , 2019, Journal of Materials Chemistry A.

[22]  X. Ren,et al.  Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: A perspective multifunctional thermal and environmental barrier coating material , 2019, Scripta Materialia.

[23]  Jia Liu,et al.  High-entropy environmental barrier coating for the ceramic matrix composites , 2019, Journal of the European Ceramic Society.

[24]  Jingyang Wang,et al.  Robust hydrophobicity and evaporation inertness of rare‐earth monosilicates in hot steam at very high temperature , 2019, Journal of the American Ceramic Society.

[25]  X. Ren,et al.  Towards thermal barrier coating application for rare earth silicates RE2SiO5 (RE= La, Nd, Sm, Eu, and Gd) , 2019, Journal of the European Ceramic Society.

[26]  Yanfei Wang,et al.  Study on water vapor corrosion resistance of rare earth monosilicates RE2SiO5 (RE = Lu, Yb, Tm, Er, Ho, Dy, Y, and Sc) from first-principles calculations , 2018, Heliyon.

[27]  Fangfang Xu,et al.  Rare earth silicate environmental barrier coatings: Present status and prospective , 2017 .

[28]  Yanchun Zhou,et al.  Thermal properties of single-phase Y2SiO5 , 2009 .

[29]  Jialin Li,et al.  Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications , 2016 .

[30]  K. Nickel,et al.  High temperature water vapour corrosion of rare earth disilicates (Y,Yb,Lu)2Si2O7 in the presence of Al(OH)3 impurities , 2007 .

[31]  C. Sauder,et al.  Young's modulus, thermal expansion coefficient and fracture behavior of selected Si–B–C based carbides in the 20–1200 °C temperature range as derived from the behavior of carbon fiber reinforced microcomposites , 2007 .

[32]  Narottam P. Bansal,et al.  Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics , 2005 .

[33]  H. Eaton,et al.  Accelerated oxidation of SiC CMC's by water vapor and protection via environmental barrier coating approach , 2002 .