Tractable approximations for temporal constraint handling

Abstract Relation algebras have been used for various kinds of temporal reasoning. Typically the network satisfaction problem turns out to be NP-hard. For the Allen interval algebra it is often convenient to use the propagation algorithm. This algorithm is sound and runs in cubic time but it is not complete. Here we define a series of tractable algorithms that provide approximations to solving the network satisfaction problem for any finite relation algebra. For algebras where all 3-consistent atomic networks are satisfiable, like the Allen interval algebra, we can improve these algorithms so that each algorithm runs in cubic time. These algorithms improve on the Allen propagation algorithm and converge on a complete algorithm.

[1]  R. N. Pelavin A formal approach to planning with concurrent actions and external events , 1988 .

[2]  Henry A. Kautz,et al.  Integrating Metric and Qualitative Temporal Reasoning , 1991, AAAI.

[3]  Henry A. Kautz,et al.  Constraint Propagation Algorithms for Temporal Reasoning , 1986, AAAI.

[4]  Peter B. Ladkin,et al.  On binary constraint problems , 1994, JACM.

[5]  Alexander Reinefeld,et al.  A Symbolic Approach to Interval Constraint Problems , 1992, AISMC.

[6]  James F. Allen,et al.  Planning Using a Temporal World Model , 1983, IJCAI.

[7]  James F. Allen Towards a General Theory of Action and Time , 1984, Artif. Intell..

[8]  Drew McDermott,et al.  Temporal Data Base Management , 1987, Artif. Intell..

[9]  Henry A. Kautz,et al.  Constraint propagation algorithms for temporal reasoning: a revised report , 1989 .

[10]  R. Lyndon THE REPRESENTATION OF RELATIONAL ALGEBRAS , 1950 .

[11]  C. J. Everett,et al.  The Representation of Relational Algebras. , 1951 .

[12]  Ian M. Hodkinson,et al.  Step by step – Building representations in algebraic logic , 1997, Journal of Symbolic Logic.

[13]  Patrick J. Hayes,et al.  Moments and points in an interval‐based temporal logic , 1989, Comput. Intell..

[14]  Robin Hirsch,et al.  A Finite Relation Algebra with Undecidable Network Satisfaction Problem , 1999, Log. J. IGPL.

[15]  Roger D. Maddux,et al.  The origin of relation algebras in the development and axiomatization of the calculus of relations , 1991, Stud Logica.

[16]  R. Lyndon THE REPRESENTATION OF RELATION ALGEBRAS, II , 1956 .

[17]  Ian M. Hodkinson,et al.  Axiomatising Various Classes of Relation and Cylindric Algebras , 1997, Log. J. IGPL.

[18]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[19]  Robin Hirsch,et al.  Expressive Power and Complexity in Algebraic Logic , 1997, J. Log. Comput..

[20]  Algebraic logic , 1985, Problem books in mathematics.

[21]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[22]  James F. Allen An Interval-Based Representation of Temporal Knowledge , 1981, IJCAI.

[23]  Henry Kautz,et al.  A model of naive temporal reasoning , 1985 .