On central critical values of the degree four L -functions for GSp ( 4 ) : a simple trace formula

We establish a simple relative trace formula for GSp ( 4 ) and inner forms with respect to Bessel subgroups to obtain a certain Bessel identity. From such an identity, one can hope to prove a formula relating central values of degree four spinor L -functions to squares of Bessel periods as conjectured by Böcherer. Under some local assumptions, we obtain nonvanishing results, i.e., a global Gross–Prasad conjecture for ( SO ( 5 ), SO ( 2 )) .

[1]  Wei Zhang Fourier transform and the global Gan–Gross–Prasad conjecture for unitary groups , 2014 .

[2]  W. Gan,et al.  The local Langlands conjecture for GSp(4), II: The case of inner forms , 2014 .

[3]  Ulrich Görtz James Arthur: “The Endoscopic Classification of Representations. Orthogonal and Symplectic Groups” , 2014, Jahresbericht der Deutschen Mathematiker-Vereinigung.

[4]  Wei Zhang Automorphic period and the central value of Rankin--Selberg L-function , 2012, 1208.6280.

[5]  W. Gan,et al.  The regularized Siegel–Weil formula (the second term identity) and the Rallis inner product formula , 2012, 1207.4709.

[6]  Atsushi Ichino,et al.  On the Periods of Automorphic Forms on Special Orthogonal Groups and the Gross–Prasad Conjecture , 2010 .

[7]  C. Moeglin,et al.  La conjecture locale de Gross-Prasad pour les groupes sp\'eciaux orthogonaux: le cas g\'en\'eral , 2010, 1001.0826.

[8]  J. Waldspurger Une formule intégrale reliée à la conjecture locale de Gross–Prasad , 2009, Compositio Mathematica.

[9]  Kimball Martin,et al.  Central L-Values and Toric Periods for GL(2) , 2009 .

[10]  Avraham Aizenbud,et al.  $$(O(V \oplus F), O(V))$$ is a Gelfand pair for any quadratic space V over a local field F , 2007, 0711.1471.

[11]  Ramin Takloo-Bighash,et al.  Bessel models for GSp(4) , 2007, 0712.2092.

[12]  Avraham Aizenbud,et al.  (O(V+F), O(V)) is a Gelfand pair for a quadratic space V over a local field F , 2007 .

[13]  Avraham Aizenbud,et al.  Multiplicity one Theorems , 2007, 0709.4215.

[14]  W. Gan,et al.  The Local Langlands Conjecture for GSp(4) , 2007, 0805.2731.

[15]  Omer Offen,et al.  Compact unitary periods , 2007, Compositio Mathematica.

[16]  D. Soudry,et al.  The multiplicity-one theorem for generic automorphic forms of GSp(4) , 2007 .

[17]  Kimball Martin,et al.  Shalika periods on GL 2 (D) and GL 4 , 2007 .

[18]  Dihua Jiang,et al.  On the nonvanishing of the central value of the Rankin-Selberg L-functions , 2004 .

[19]  Kimball Martin,et al.  On central critical values of the degree four L-functions for GSp (4): the fundamental lemma, II , 2011 .

[20]  J. Waldspurger LA FORMULE DE PLANCHEREL POUR LES GROUPES p-ADIQUES. D’APRÈS HARISH-CHANDRA , 2003, Journal of the Institute of Mathematics of Jussieu.

[21]  Zhengyu Mao,et al.  Central Value Of Automorphic L-Functions , 2003, math/0301115.

[22]  Hervé Jacquet,et al.  Positivity of quadratic base change $L$-functions , 2001 .

[23]  Ramin Takloo-Bighash L-functions for the p-adic group GSp(4) , 2000 .

[24]  J. Rogawski,et al.  Stabilization of periods of Eisenstein series and Bessel distributions on $GL(3)$ relative to $U(3)$ , 2000, Documenta Mathematica.

[25]  B. Gross,et al.  On Irreducible Representations of So2n+1 × So2m , 1994, Canadian Journal of Mathematics.

[26]  D. Soudry Rankin-Selberg convolutions for SO[2l+1] × GL[n] : local theory , 1993 .

[27]  B. Gross,et al.  On the Decomposition of a Representation of SOn When Restricted to SOn-1 , 1992, Canadian Journal of Mathematics.

[28]  D. Bump The Rankin–Selberg Method: A Survey , 1989 .

[29]  Hervé Jacquet Sur un résultat de Waldspurger II , 1987 .

[30]  Hervé Jacquet Sur un résultat de Waldspurger , 1986 .

[31]  J. Waldspurger Sur les valeurs de certaines fonctions $L$ automorphes en leur centre de symétrie , 1985 .

[32]  J. L. Waldspurger,et al.  Sur les coefficients de Fourier des formes modulaires de poids demi-entier , 1981 .

[33]  Robert P. Langlands,et al.  BASE CHANGE FOR GL(2) , 1980 .