On central critical values of the degree four L -functions for GSp ( 4 ) : a simple trace formula
暂无分享,去创建一个
[1] Wei Zhang. Fourier transform and the global Gan–Gross–Prasad conjecture for unitary groups , 2014 .
[2] W. Gan,et al. The local Langlands conjecture for GSp(4), II: The case of inner forms , 2014 .
[3] Ulrich Görtz. James Arthur: “The Endoscopic Classification of Representations. Orthogonal and Symplectic Groups” , 2014, Jahresbericht der Deutschen Mathematiker-Vereinigung.
[4] Wei Zhang. Automorphic period and the central value of Rankin--Selberg L-function , 2012, 1208.6280.
[5] W. Gan,et al. The regularized Siegel–Weil formula (the second term identity) and the Rallis inner product formula , 2012, 1207.4709.
[6] Atsushi Ichino,et al. On the Periods of Automorphic Forms on Special Orthogonal Groups and the Gross–Prasad Conjecture , 2010 .
[7] C. Moeglin,et al. La conjecture locale de Gross-Prasad pour les groupes sp\'eciaux orthogonaux: le cas g\'en\'eral , 2010, 1001.0826.
[8] J. Waldspurger. Une formule intégrale reliée à la conjecture locale de Gross–Prasad , 2009, Compositio Mathematica.
[9] Kimball Martin,et al. Central L-Values and Toric Periods for GL(2) , 2009 .
[10] Avraham Aizenbud,et al. $$(O(V \oplus F), O(V))$$ is a Gelfand pair for any quadratic space V over a local field F , 2007, 0711.1471.
[11] Ramin Takloo-Bighash,et al. Bessel models for GSp(4) , 2007, 0712.2092.
[12] Avraham Aizenbud,et al. (O(V+F), O(V)) is a Gelfand pair for a quadratic space V over a local field F , 2007 .
[13] Avraham Aizenbud,et al. Multiplicity one Theorems , 2007, 0709.4215.
[14] W. Gan,et al. The Local Langlands Conjecture for GSp(4) , 2007, 0805.2731.
[15] Omer Offen,et al. Compact unitary periods , 2007, Compositio Mathematica.
[16] D. Soudry,et al. The multiplicity-one theorem for generic automorphic forms of GSp(4) , 2007 .
[17] Kimball Martin,et al. Shalika periods on GL 2 (D) and GL 4 , 2007 .
[18] Dihua Jiang,et al. On the nonvanishing of the central value of the Rankin-Selberg L-functions , 2004 .
[19] Kimball Martin,et al. On central critical values of the degree four L-functions for GSp (4): the fundamental lemma, II , 2011 .
[20] J. Waldspurger. LA FORMULE DE PLANCHEREL POUR LES GROUPES p-ADIQUES. D’APRÈS HARISH-CHANDRA , 2003, Journal of the Institute of Mathematics of Jussieu.
[21] Zhengyu Mao,et al. Central Value Of Automorphic L-Functions , 2003, math/0301115.
[22] Hervé Jacquet,et al. Positivity of quadratic base change $L$-functions , 2001 .
[23] Ramin Takloo-Bighash. L-functions for the p-adic group GSp(4) , 2000 .
[24] J. Rogawski,et al. Stabilization of periods of Eisenstein series and Bessel distributions on $GL(3)$ relative to $U(3)$ , 2000, Documenta Mathematica.
[25] B. Gross,et al. On Irreducible Representations of So2n+1 × So2m , 1994, Canadian Journal of Mathematics.
[26] D. Soudry. Rankin-Selberg convolutions for SO[2l+1] × GL[n] : local theory , 1993 .
[27] B. Gross,et al. On the Decomposition of a Representation of SOn When Restricted to SOn-1 , 1992, Canadian Journal of Mathematics.
[28] D. Bump. The Rankin–Selberg Method: A Survey , 1989 .
[29] Hervé Jacquet. Sur un résultat de Waldspurger II , 1987 .
[30] Hervé Jacquet. Sur un résultat de Waldspurger , 1986 .
[31] J. Waldspurger. Sur les valeurs de certaines fonctions $L$ automorphes en leur centre de symétrie , 1985 .
[32] J. L. Waldspurger,et al. Sur les coefficients de Fourier des formes modulaires de poids demi-entier , 1981 .
[33] Robert P. Langlands,et al. BASE CHANGE FOR GL(2) , 1980 .