A novel efficient algorithm for mobile robot localization

Being autonomous is one of the most important goals in mobile robots. One of the fundamental works to achieve this goal is giving the ability to a robot for finding its own correct position and orientation. Different methods have been introduced to solve this problem. In this paper, a novel method based on the harmony search (HS) algorithm for robot localization through scan matching is proposed. Simulation results show that the proposed method in comparison with a genetic algorithm-based approach has better accuracy and higher performance. Furthermore a new hybrid algorithm based on harmony search and differential evolution (DE) algorithms is proposed and evaluated on different benchmark functions. Finally the hybrid algorithm has been applied for mobile robot localization and it outperformed the HS-based approach.

[1]  H. Yoshitaka,et al.  Mobile Robot Localization and Mapping by Scan Matching using Laser Reflection Intensity of the SOKUIKI Sensor , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[2]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..

[3]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[4]  John J. Leonard,et al.  Towards Robust Data Association and Feature Modeling for Concurrent Mapping and Localization , 2001, ISRR.

[5]  Sebastian Thrun,et al.  Detecting and modeling doors with mobile robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[6]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[7]  Ngai Ming Kwok,et al.  Evolutionary particle filter: re-sampling from the genetic algorithm perspective , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[9]  Kim L. Boyer,et al.  Enhanced, robust genetic algorithms for multiview range image registration , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[10]  Mehrnoush Shamsfard,et al.  An Efficient Meta Heuristic Algorithm for POS-tagging , 2010, 2010 Fifth International Multi-conference on Computing in the Global Information Technology.

[11]  Stergios I. Roumeliotis,et al.  Bayesian estimation and Kalman filtering: a unified framework for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[12]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[13]  Abolfazl Toroghi Haghighat,et al.  Harmony search based algorithms for bandwidth-delay-constrained least-cost multicast routing , 2008, Comput. Commun..

[14]  Javier González,et al.  Mobile robot motion estimation by 2D scan matching with genetic and iterative closest point algorithms , 2006, J. Field Robotics.

[15]  A.T. Haghighat,et al.  An efficient algorithm for bandwidth-delay constrained least cost multicast routing , 2008, 2008 Canadian Conference on Electrical and Computer Engineering.

[16]  Amit Konar,et al.  Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives , 2008, Advances of Computational Intelligence in Industrial Systems.

[17]  Patric Jensfelt,et al.  Experiments on augmenting CONDENSATION for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[18]  Mohammad Reza Meybodi,et al.  Efficient stochastic algorithms for document clustering , 2013, Inf. Sci..

[19]  Johannes Reuter Mobile robot self-localization using PDAB , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[20]  Aníbal Ollero,et al.  Map building for a mobile robot equipped with a 2D laser rangefinder , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[21]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Ronald Parr,et al.  DP-SLAM: fast, robust simultaneous localization and mapping without predetermined landmarks , 2003, IJCAI 2003.

[23]  Wolfram Burgard,et al.  An efficient fastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[24]  Wolfram Burgard,et al.  Using EM to Learn 3D Models of Indoor Environments with Mobile Robots , 2001, ICML.

[25]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[26]  Morteza Haghir Chehreghani,et al.  Novel meta-heuristic algorithms for clustering web documents , 2008, Appl. Math. Comput..

[27]  Hans P. Moravec Sensor Fusion in Certainty Grids for Mobile Robots , 1988, AI Mag..

[28]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[29]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1997, J. Intell. Robotic Syst..

[30]  Rana Forsati,et al.  Web Text Mining Using Harmony Search , 2010, Recent Advances In Harmony Search Algorithm.

[31]  Patric Jensfelt,et al.  Using multiple Gaussian hypotheses to represent probability distributions for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[32]  Roland Siegwart,et al.  Feature-based multi-hypothesis localization and tracking for mobile robots using geometric constraints , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[33]  Tom Duckett A genetic algorithm for simultaneous localization and mapping , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[34]  Dolores Blanco,et al.  Mobile Robot Global Localization using an Evolutionary MAP Filter , 2007, J. Glob. Optim..

[35]  Patric Jensfelt,et al.  Active global localization for a mobile robot using multiple hypothesis tracking , 2001, IEEE Trans. Robotics Autom..

[36]  Roland Siegwart,et al.  Feature extraction and scene interpretation for map-based navigation and map building , 1998, Other Conferences.

[37]  Enzo Mumolo,et al.  Fast Genetic Scan Matching Using Corresponding Point Measurements in Mobile Robotics , 2007, EvoWorkshops.

[38]  Wolfram Burgard,et al.  Using EM to learn motion behaviors of persons with mobile robots , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[39]  J.-S. Gutmann,et al.  RG mapping: learning compact and structured 2D line maps of indoor environments , 2002, Proceedings. 11th IEEE International Workshop on Robot and Human Interactive Communication.

[40]  Wolfram Burgard,et al.  A comparison of methods for line extraction from range data , 2004 .

[41]  Ingemar J. Cox,et al.  Modeling a Dynamic Environment Using a Bayesian Multiple Hypothesis Approach , 1994, Artif. Intell..

[42]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[43]  Wolfram Burgard,et al.  Sonar-Based Mapping of Large-Scale Mobile Robot Environments using EM , 1999, ICML.

[44]  Anikó Ekárt,et al.  Pre-registration of arbitrarily oriented 3D surfaces using a genetic algorithm , 2006, Pattern Recognit. Lett..

[45]  James L. Crowley World modeling and position estimation for a mobile robot using ultrasonic ranging , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[46]  Wolfram Burgard,et al.  Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.

[47]  Luis Moreno,et al.  A Genetic Algorithm for Mobile Robot Localization Using Ultrasonic Sensors , 1999, J. Intell. Robotic Syst..

[48]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).