Duality group for Calabi-Yau two-moduli space
暂无分享,去创建一个
[1] S. Yau,et al. Mirror symmetry for two parameter models. I , 1996 .
[2] S. Katz,et al. Mirror Symmetry for Two Parameter Models - II * , 1994, hep-th/9403187.
[3] S. Ferrara,et al. String Quantum Symmetries from Picard Fuchs Equations and Their Monodromy , 1993, hep-th/9306020.
[4] J. Polchinski. Low-energy dynamics of the spinon-gauge system , 1993, cond-mat/9303037.
[5] S. Theisen,et al. Considerations of one modulus Calabi-Yau compactifications: Picard-Fuchs equations, Kahler potentials and mirror maps , 1992, hep-th/9205041.
[6] S. Ferrara,et al. Picard-Fuchs Equations and Special Geometry , 1992, hep-th/9204035.
[7] A. Font. Periods and duality symmetries in Calabi-Yau compactifications , 1992, hep-th/9203084.
[8] J. Schwarz. Can string theory overcome deep problems in quantum gravity , 1991 .
[9] S. Ferrara,et al. Picard-Fuchs equations and the moduli space of superconformal field theories , 1991 .
[10] N. Warner,et al. Differential equations for periods and flat coordinates in two-dimensional topological matter theories , 1991, hep-th/9108013.
[11] Xenia de la Ossa,et al. A Pair of Calabi-Yau manifolds as an exactly soluble superconformal theory , 1991 .
[12] M. Porrati,et al. Duality invariant string algebra and D = 4 effective actions , 1991 .
[13] Xenia de la Ossa,et al. An exactly soluble superconformal theory from a mirror pair of Calabi-Yau manifolds☆ , 1991 .
[14] H. Nilles,et al. Twisted sector representations of discrete background symmetries for two-dimensional orbifolds , 1991 .
[15] M. Porrati,et al. A completely duality invariant effective action of N = 4 heterotic strings , 1990 .
[16] M. Duff. Duality rotations in string theory , 1990 .
[17] S. Ferrara,et al. SPECIAL KAHLER GEOMETRY: AN INTRINSIC FORMULATION FROM N=2 SPACE-TIME SUPERSYMMETRY , 1990 .
[18] A. Giveon,et al. On Discrete Symmetries and Fundamental Domains of Target Space , 1990 .
[19] S. Theisen,et al. Target space modular invariance and low-energy couplings in orbifold compacifications , 1989 .
[20] Nathan Seiberg,et al. Large and small radius in string theory , 1989 .
[21] H. Nilles,et al. Duality and the role of nonperturbative effects on the world-sheet , 1989 .
[22] G. Veneziano,et al. Duality in String Background Space , 1989 .
[23] N. Sakai,et al. Vacuum Energies of String Compactified on Torus , 1986 .
[24] E. Cremmer,et al. Classification of Kahler Manifolds in $N=2$ Vector Multiplet Supergravity Couplings , 1985 .
[25] E. Witten. Dimensional Reduction of Superstring Models , 1985 .
[26] E. Speer,et al. The monodromy rings of one loop Feynman integrals , 1970 .
[27] T. Regge. THE FUNDAMENTAL GROUP OF POINCARE AND THE ANALYTIC PROPERTIES OF FEYNMAN RELATIVISTIC AMPLITUDES. , 1969 .
[28] E. Speer,et al. The monodromy rings of a class of self-energy graphs , 1969 .
[29] S. Yau. Essays on mirror manifolds , 1992 .
[30] L. Dixon,et al. On effective field theories describing (2, 2) vacua of the heterotic string☆ , 1990 .
[31] F. Wilczek,et al. Compactification of the Twisted Heterotic String , 1987 .
[32] L. Roth,et al. Algebraic Surfaces , 1950, Nature.
[33] Oscar Zariski,et al. A Theorem on the Poincare Group of an Algebraic Hypersurface , 1937 .
[34] S. Lefschetz. Zariski on Algebraic Surfaces , 1936 .
[35] Egbert R. Van Kampen,et al. On the Fundamental Group of an Algebraic Curve , 1933 .