Duality group for Calabi-Yau two-moduli space

[1]  S. Yau,et al.  Mirror symmetry for two parameter models. I , 1996 .

[2]  S. Katz,et al.  Mirror Symmetry for Two Parameter Models - II * , 1994, hep-th/9403187.

[3]  S. Ferrara,et al.  String Quantum Symmetries from Picard Fuchs Equations and Their Monodromy , 1993, hep-th/9306020.

[4]  J. Polchinski Low-energy dynamics of the spinon-gauge system , 1993, cond-mat/9303037.

[5]  S. Theisen,et al.  Considerations of one modulus Calabi-Yau compactifications: Picard-Fuchs equations, Kahler potentials and mirror maps , 1992, hep-th/9205041.

[6]  S. Ferrara,et al.  Picard-Fuchs Equations and Special Geometry , 1992, hep-th/9204035.

[7]  A. Font Periods and duality symmetries in Calabi-Yau compactifications , 1992, hep-th/9203084.

[8]  J. Schwarz Can string theory overcome deep problems in quantum gravity , 1991 .

[9]  S. Ferrara,et al.  Picard-Fuchs equations and the moduli space of superconformal field theories , 1991 .

[10]  N. Warner,et al.  Differential equations for periods and flat coordinates in two-dimensional topological matter theories , 1991, hep-th/9108013.

[11]  Xenia de la Ossa,et al.  A Pair of Calabi-Yau manifolds as an exactly soluble superconformal theory , 1991 .

[12]  M. Porrati,et al.  Duality invariant string algebra and D = 4 effective actions , 1991 .

[13]  Xenia de la Ossa,et al.  An exactly soluble superconformal theory from a mirror pair of Calabi-Yau manifolds☆ , 1991 .

[14]  H. Nilles,et al.  Twisted sector representations of discrete background symmetries for two-dimensional orbifolds , 1991 .

[15]  M. Porrati,et al.  A completely duality invariant effective action of N = 4 heterotic strings , 1990 .

[16]  M. Duff Duality rotations in string theory , 1990 .

[17]  S. Ferrara,et al.  SPECIAL KAHLER GEOMETRY: AN INTRINSIC FORMULATION FROM N=2 SPACE-TIME SUPERSYMMETRY , 1990 .

[18]  A. Giveon,et al.  On Discrete Symmetries and Fundamental Domains of Target Space , 1990 .

[19]  S. Theisen,et al.  Target space modular invariance and low-energy couplings in orbifold compacifications , 1989 .

[20]  Nathan Seiberg,et al.  Large and small radius in string theory , 1989 .

[21]  H. Nilles,et al.  Duality and the role of nonperturbative effects on the world-sheet , 1989 .

[22]  G. Veneziano,et al.  Duality in String Background Space , 1989 .

[23]  N. Sakai,et al.  Vacuum Energies of String Compactified on Torus , 1986 .

[24]  E. Cremmer,et al.  Classification of Kahler Manifolds in $N=2$ Vector Multiplet Supergravity Couplings , 1985 .

[25]  E. Witten Dimensional Reduction of Superstring Models , 1985 .

[26]  E. Speer,et al.  The monodromy rings of one loop Feynman integrals , 1970 .

[27]  T. Regge THE FUNDAMENTAL GROUP OF POINCARE AND THE ANALYTIC PROPERTIES OF FEYNMAN RELATIVISTIC AMPLITUDES. , 1969 .

[28]  E. Speer,et al.  The monodromy rings of a class of self-energy graphs , 1969 .

[29]  S. Yau Essays on mirror manifolds , 1992 .

[30]  L. Dixon,et al.  On effective field theories describing (2, 2) vacua of the heterotic string☆ , 1990 .

[31]  F. Wilczek,et al.  Compactification of the Twisted Heterotic String , 1987 .

[32]  L. Roth,et al.  Algebraic Surfaces , 1950, Nature.

[33]  Oscar Zariski,et al.  A Theorem on the Poincare Group of an Algebraic Hypersurface , 1937 .

[34]  S. Lefschetz Zariski on Algebraic Surfaces , 1936 .

[35]  Egbert R. Van Kampen,et al.  On the Fundamental Group of an Algebraic Curve , 1933 .