Snap-through piezoelectric energy harvesting

Abstract Snap-through mechanism is employed to harvest electricity from random vibration through piezoelectricity. The random excitation is assumed to be Gaussian white noise. The snap-through piezoelectric energy harvester possesses the bistability. For small-amplitude vibration in a potential well, the Ito stochastic differential equation of the electromechanical coupling system is derived from the Taylor approximation at a stable equilibrium point. The method of the moment differential equations is applied to determine the statistical moments of the displacement response and the output voltage. The effects of the system parameters on the output voltage and the output power are examined. The approximate analytical outcomes are qualitatively and quantitatively supported by the numerical simulations. For large-amplitude interwell motion, the effects of the parameters on the output voltage and the output power are numerically investigated. Nonlinearity produced by the snap-through improves energy harvesting so that the snap-through piezoelectric energy harvester can outperform the linear energy harvester in the similar size under Gaussian white noise excitations.

[1]  Sondipon Adhikari,et al.  The analysis of piezomagnetoelastic energy harvesters under broadband random excitations , 2011 .

[2]  D. Inman,et al.  Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling , 2011 .

[3]  Just L. Herder,et al.  Bistable vibration energy harvesters: A review , 2013 .

[4]  Ryan L. Harne,et al.  A review of the recent research on vibration energy harvesting via bistable systems , 2013 .

[5]  L. Gammaitoni,et al.  Nonlinear energy harvesting. , 2008, Physical review letters.

[6]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[7]  Mohammed F. Daqaq,et al.  On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations , 2012 .

[8]  Mohammed F. Daqaq,et al.  Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise , 2011 .

[9]  I. Kovacic,et al.  Potential benefits of a non-linear stiffness in an energy harvesting device , 2010 .

[10]  Colin R. McInnes,et al.  Enhanced Vibrational Energy Harvesting Using Non-linear Stochastic Resonance , 2008 .

[11]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[12]  Yang Zhu,et al.  A Magnetoelectric Generator for Energy Harvesting From the Vibration of Magnetic Levitation , 2012, IEEE Transactions on Magnetics.

[13]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[14]  J F V Vincent,et al.  The "click" mechanism in dipteran flight: if it exists, then what effect does it have? , 2003, Journal of theoretical biology.

[15]  Nicholas B. Tufillaro,et al.  Nonlinear and chaotic string vibrations , 1989 .

[16]  Li Yuan,et al.  On the energy harvesting potential of a nonlinear SD oscillator , 2013 .

[17]  Sang-Gook Kim,et al.  DESIGN CONSIDERATIONS FOR MEMS-SCALE PIEZOELECTRIC MECHANICAL VIBRATION ENERGY HARVESTERS , 2005 .

[18]  N. Elvin,et al.  Advances in energy harvesting methods , 2013 .

[19]  Brian P. Mann,et al.  Harmonic balance analysis of the bistable piezoelectric inertial generator , 2012 .

[20]  Celso Grebogi,et al.  Archetypal oscillator for smooth and discontinuous dynamics. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  D. Dane Quinn,et al.  The Effect of Non-linear Piezoelectric Coupling on Vibration-based Energy Harvesting , 2009 .

[22]  Daniel J. Inman,et al.  Piezoelectric energy harvesting from broadband random vibrations , 2009 .

[23]  Daniel J. Inman,et al.  Piezoelectric Energy Harvesting , 2011 .

[24]  Yaowen Yang,et al.  Toward Broadband Vibration-based Energy Harvesting , 2010 .

[25]  Giles W Hunt,et al.  A general theory of elastic stability , 1973 .

[26]  Grzegorz Litak,et al.  Magnetopiezoelastic energy harvesting driven by random excitations , 2010 .

[27]  Kais Atallah,et al.  The benefits of Duffing-type nonlinearities and electrical optimisation of a mono-stable energy harvester under white Gaussian excitations , 2012 .