Hard Life with Weak Binders

We introduce weak binders, a lightweight construct to deal with fresh names in nominal calculi. Weak binders do not define the scope of names as precisely as the standard @n-binders, yet they enjoy strong semantic properties. We provide them with a denotational semantics, an equational theory, and a trace inclusion preorder. Furthermore, we present a trace-preserving mapping between weak binders and @n-binders.

[1]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[2]  Hans Hüttel,et al.  Review: Davide Sangiorgi, David Walker, The $\pi $-Calculus: A Theory of Mobile Processes , 2002 .

[3]  Corrado Priami,et al.  Names of the -calculus agents handled locally , 2001, Theor. Comput. Sci..

[4]  Ian Mackie,et al.  Closed reduction: explicit substitutions without alpha-conversion , 2005, Math. Struct. Comput. Sci..

[5]  Marco Pistore,et al.  An Introduction to History Dependent Automata , 1998, HOOTS.

[6]  Mario Bravetti,et al.  Towards a Unifying Theory for Choreography Conformance and Contract Compliance , 2007, SC@ETAPS.

[7]  Andrew M. Pitts,et al.  A New Approach to Abstract Syntax with Variable Binding , 2002, Formal Aspects of Computing.

[8]  Murdoch J. Gabbay The π-Calculus in FM , 2003 .

[9]  Jan A. Bergstra,et al.  Algebra of Communicating Processes with Abstraction , 1985, Theor. Comput. Sci..

[10]  Andrew M. Pitts,et al.  Higher order operational techniques in semantics , 1999 .

[11]  Atsushi Igarashi,et al.  Type Reconstruction for Linear -Calculus with I/O Subtyping , 2000, Inf. Comput..

[12]  Marco Pistore,et al.  Structured coalgebras and minimal HD-automata for the pi-calculus , 2005, Theor. Comput. Sci..

[13]  Michael Norrish,et al.  Proof Pearl: De Bruijn Terms Really Do Work , 2007, TPHOLs.

[14]  I. Stark,et al.  Operational reasoning for functions with local state , 1999 .

[15]  Andrew M. Pitts,et al.  On a monadic semantics for freshness , 2005, Theor. Comput. Sci..

[16]  Andrew M. Pitts,et al.  FreshML: programming with binders made simple , 2003, ICFP '03.

[17]  Raheel Ahmad,et al.  The π-Calculus: A theory of mobile processes , 2008, Scalable Comput. Pract. Exp..

[18]  Martin Odersky,et al.  A functional theory of local names , 1994, POPL '94.

[19]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[20]  Davide Sangiorgi,et al.  The Pi-Calculus - a theory of mobile processes , 2001 .

[21]  Gian Luigi Ferrari,et al.  Types and Effects for Resource Usage Analysis , 2007, FoSSaCS.