Protection–deprotection Methods Applied to Metal–Organic Frameworks for the Design of Original Single‐Site Catalysts

The functionalization of metal–organic frameworks (MOFs) by post-synthetic methods (PSM) is an emerging approach for engineering porous coordination polymers at the molecular scale. In this context, however, it is assumed that the intrinsic fragility of the coordination bonds involved in the MOF network makes it impossible to graft highly reactive or coordinative functions into MOFs. The protection–deprotection approach is a general concept that aims to circumvent this limitation, thereby enabling the synthesis of very sophisticated and reactive materials. Very recently, two pioneering research groups, one headed by S. Kitagawa and the other by Cohen, have reported the first light-driven deprotection of MOFs to reveal “dormant” reactive functionalities (Scheme 1). This in-

[1]  Seth M Cohen,et al.  Photochemical activation of a metal-organic framework to reveal functionality. , 2010, Angewandte Chemie.

[2]  S. Kitagawa,et al.  Photoactivation of a nanoporous crystal for on-demand guest trapping and conversion. , 2010, Nature materials.

[3]  M. Rosseinsky Metal-organic frameworks: Enlightened pores. , 2010, Nature materials.

[4]  S. Telfer,et al.  Thermolabile groups in metal-organic frameworks: suppression of network interpenetration, post-synthetic cavity expansion, and protection of reactive functional groups. , 2010, Angewandte Chemie.

[5]  Seth M. Cohen Modifying MOFs: new chemistry, new materials , 2010 .

[6]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[7]  C. Pinel,et al.  Generic postfunctionalization route from amino-derived metal-organic frameworks. , 2010, Journal of the American Chemical Society.

[8]  Sir John. Meurig Thomas The Advantages of Exploring the Interface Between Heterogeneous and Homogeneous Catalysis , 2010 .

[9]  K. Harris,et al.  Selected Thoughts on Chiral Crystals, Chiral Surfaces, and Asymmetric Heterogeneous Catalysis , 2009 .

[10]  David Farrusseng,et al.  Metall‐organische Gerüste für die Katalyse , 2009 .

[11]  C. Pinel,et al.  Metal-organic frameworks: opportunities for catalysis. , 2009, Angewandte Chemie.

[12]  Seth M. Cohen,et al.  Engineering a metal-organic framework catalyst by using postsynthetic modification. , 2009, Angewandte Chemie.

[13]  S. Nguyen,et al.  Selective bifunctional modification of a non-catenated metal-organic framework material via "click" chemistry. , 2009, Journal of the American Chemical Society.

[14]  A. Corma,et al.  Gold(III) ― metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts , 2009 .

[15]  Omar M Yaghi,et al.  Isoreticular metalation of metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[16]  E. A. Quadrelli,et al.  H/D Exchange on Silica-Grafted Tantalum(V) Imido Amido [(≡SiO)2Ta(V)(NH)(NH2)] Synthesized from Either Ammonia or Dinitrogen: IR and DFT Evidence for Heterolytic Splitting of D2 , 2009 .

[17]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[18]  Teppei Yamada,et al.  Protection and deprotection approach for the introduction of functional groups into metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[19]  Abraham M. Shultz,et al.  A catalytically active, permanently microporous MOF with metalloporphyrin struts. , 2009, Journal of the American Chemical Society.

[20]  Seth M. Cohen,et al.  Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity. , 2009, Inorganic chemistry.

[21]  Scott R. Wilson,et al.  Covalent surface modification of a metal-organic framework: selective surface engineering via Cu(I)-catalyzed Huisgen cycloaddition. , 2008, Chemical communications.

[22]  S. Shinkai,et al.  "Clickable" metal-organic framework. , 2008, Journal of the American Chemical Society.

[23]  M. Eddaoudi,et al.  Zeolite-like metal-organic frameworks as platforms for applications: on metalloporphyrin-based catalysts. , 2008, Journal of the American Chemical Society.

[24]  Christian J. Doonan,et al.  Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks. , 2008, Journal of the American Chemical Society.

[25]  C. Serre,et al.  High-throughput assisted rationalization of the formation of metal organic frameworks in the Iron(III) aminoterephthalate solvothermal system. , 2008, Inorganic chemistry.

[26]  M. Rosseinsky,et al.  Framework functionalisation triggers metal complex binding. , 2008, Chemical communications.

[27]  Robert Raja,et al.  Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity. , 2008, Accounts of chemical research.

[28]  S. Teat,et al.  Chemical Modification of a Bridging Ligand Inside a Metal–Organic Framework while Maintaining the 3D Structure , 2008 .

[29]  A. Matzger,et al.  A crystalline mesoporous coordination copolymer with high microporosity. , 2008, Angewandte Chemie.

[30]  E. A. Quadrelli,et al.  Dinitrogen Dissociation on an Isolated Surface Tantalum Atom , 2007, Science.

[31]  S. Kitagawa,et al.  Pore surface engineering of microporous coordination polymers. , 2006, Chemical communications.

[32]  Kimoon Kim,et al.  Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. , 2004, Journal of the American Chemical Society.

[33]  Jean-Marie Basset,et al.  Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. , 2003, Angewandte Chemie.

[34]  Jean-Marie Basset,et al.  Homogene und heterogene Katalyse – Brückenschlag durch Oberflächen‐Organometallchemie , 2003 .

[35]  Scott R. Wilson,et al.  A functional zeolite analogue assembled from metalloporphyrins , 2002, Nature materials.

[36]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[37]  Gouverneur,et al.  Improvement in olefin metathesis using a new generation of ruthenium catalyst bearing an imidazolylidene ligand: synthesis of heterocycles , 2000, Organic letters.

[38]  T. Maschmeyer,et al.  Constrained chiral catalysts , 1999 .

[39]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[40]  J. Basset,et al.  Metathesis of Alkanes Catalyzed by Silica-Supported Transition Metal Hydrides , 1997, Science.

[41]  A. Sayari Catalysis by Crystalline Mesoporous Molecular Sieves , 1996 .

[42]  J. Candy,et al.  Surface organometallic chemistry on metals: a novel and effective route to custom-designed bimetallic catalysts , 1994 .

[43]  K. Lillerud,et al.  Characterization of a New Porous Pt-Containing Metal-Organic Framework Containing Potentially Catalytically Active Sites: Local Electronic Structure at the Metal Centers , 2007 .

[44]  G. Coates,et al.  Living alkene polymerization : New methods for the precision synthesis of polyolefins , 2007 .

[45]  G. Öhlmann,et al.  Handbook of Heterogeneous Catalysis , 1999 .

[46]  A. Corma,et al.  Regiospecific hydrosilylation of styrene by rhodium complexes heterogenised on modified USY-zeolites , 1997 .

[47]  A. Corma,et al.  New rhodium complexes anchored on modified USY zeolites. A remarkable effect of the support on the enantioselectivity of catalytic hydrogenation of prochiral alkenes , 1991 .