Airborne Laser Scanning for the Site Type Identification of Mature Boreal Forest Stands

In Finland, forest site types are used to assess the need of silvicultural operations and the growth potential of the forests and, therefore, provide important inventory information. This study introduces airborne laser scanner (ALS) data and the k-NN classifier data analysis technique applicable to the site quality assessment of mature forests. Both the echo height and the intensity value percentiles of different echo types of ALS data were used in the analysis. The data are of 274 mature forest stands of different sizes, belonging to five forest site types, varying from very fertile to poor forests, in Koli National Park, eastern Finland. The k-NN classifier was applied with values of k varying from 1 to 5. The best overall classification accuracy achieved for all the forest site types and for a single type, were 58% and 73%, respectively. The conclusion is that when conducting large-scale forest inventories ALS-data based analysis would be a useful technology for the identification of mature boreal site types. However, the technique could still be improved and further studies are needed to ensure its applicability under different local conditions and with data representing earlier stages of stand development.

[1]  N. Coops,et al.  ASSESSMENT OF SUB-CANOPY STRUCTURE IN A COMPLEX CONIFEROUS FOREST , 2007 .

[2]  E. Næsset Practical large-scale forest stand inventory using a small-footprint airborne scanning laser , 2004 .

[3]  C. Hopkinson,et al.  MODELLING CANOPY GAP FRACTION FROM LIDAR INTENSITY , 2007 .

[4]  Juha Hyyppä,et al.  FACTORS AFFECTING THE QUALITY OF DTM GENERATION IN FORESTED AREAS , 2005 .

[5]  E. Næsset,et al.  UTILIZING AIRBORNE LASER INTENSITY FOR TREE SPECIES CLASSIFICATION , 2007 .

[6]  Hailemariam Temesgen,et al.  Comparison of Nearest Neighbor Methods for Estimating Basal Area and Stems per Hectare Using Aerial Auxiliary Variables , 2005, Forest Science.

[7]  Laura Chasmer,et al.  Towards a universal lidar canopy height indicator , 2006 .

[8]  Erik Næsset,et al.  Measures of spatial forest structure derived from airborne laser data are associated with natural regeneration patterns in an uneven-aged spruce forest , 2008 .

[9]  M. Maltamo,et al.  Nonparametric estimation of stem volume using airborne laser scanning, aerial photography, and stand-register data , 2006 .

[10]  Kalle Eerikäinen,et al.  A Site Dependent Simultaneous Growth Projection Model for Pinus kesiya Plantations in Zambia and Zimbabwe , 2002, Forest Science.

[11]  E. Næsset Accuracy of forest inventory using airborne laser scanning: evaluating the first nordic full-scale operational project , 2004 .

[12]  S. Magnussen,et al.  Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators , 1998 .

[13]  Albert R. Stage,et al.  Most Similar Neighbor: An Improved Sampling Inference Procedure for Natural Resource Planning , 1995, Forest Science.

[14]  Jussi Peuhkurinen,et al.  Identification of boreal forest stands with high herbaceous plant diversity using airborne laser scanning , 2009 .

[15]  J. Ritchie,et al.  Airborne laser : a tool to study landscape surface features , 1992 .

[16]  Demetrios Gatziolis,et al.  LIDAR-DERIVED SITE INDEX IN THE U.S. PACIFIC NORTHWEST - CHALLENGES AND OPPORTUNITIES , 2007 .

[17]  Ross A. Hill,et al.  GOING UNDERCOVER: MAPPING WOODLAND UNDERSTOREY FROM LEAF-ON AND LEAF-OFF LIDAR DATA , 2007 .

[18]  Kalle Ruokolainen,et al.  Using k-nn and discriminant analyses to classify rain forest types in a Landsat TM image over northern Costa Rica , 2008 .

[19]  S. Reutebuch,et al.  Estimating forest canopy fuel parameters using LIDAR data , 2005 .

[20]  Mikko Inkinen,et al.  A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners , 2001, IEEE Trans. Geosci. Remote. Sens..

[21]  Simo Poso,et al.  Kuvioittaisen arvioimismenetelmän perusteita. , 1983 .

[22]  M. Maltamo,et al.  Estimating species-specific diameter distributions and saw log recoveries of boreal forests from airborne laser scanning data and aerial photographs : a distribution-based approach , 2008 .

[23]  P. Axelsson DEM Generation from Laser Scanner Data Using Adaptive TIN Models , 2000 .

[24]  M. Flood,et al.  LiDAR remote sensing of forest structure , 2003 .

[25]  Harri Hyppänen,et al.  Päätehakkuiden kuviorajojen päivitystarkkuus , 1970 .

[26]  Markus Holopainen,et al.  Airborne small-footprint discrete-return LiDAR data in the assessment of boreal mire surface patterns, vegetation, and habitats , 2009 .

[27]  A. Cajander,et al.  Theory of forest types , 1926 .

[28]  J. Kuusipalo An ecological study of upland forest site classification in southern Finland. , 1985 .

[29]  Juha Hyyppä,et al.  Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data , 2005 .

[30]  Petteri Packalen,et al.  Airborne laser scanning-based prediction of coarse woody debris volumes in a conservation area , 2008 .

[31]  N. Coops,et al.  TOWARDS THE ESTIMATION OF TREE STRUCTURAL CLASS IN NORTHWEST COASTAL FORESTS USING LIDAR REMOTE SENSING , 2007 .

[32]  Göran Ståhl,et al.  Simultaneous Estimations of Forest Parameters using Aerial Photograph Interpreted Data and the k Nearest Neighbour Method , 2001 .

[33]  Dissertationes Forestales Vegetation patterns of boreal herb-rich forests in the Koli region , eastern Finland : classification , environmental factors and conservation aspects , 2006 .

[34]  T. Webster,et al.  Object-oriented land cover classification of lidar-derived surfaces , 2006 .

[35]  S. Ustin,et al.  Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .

[36]  Juha Hyyppä,et al.  Calibration of the optech ALTM-3100 laser scanner intensity data using brightness targets , 2006 .

[37]  K. Rennolls,et al.  Timber Management-A Quantitative Approach. , 1984 .

[38]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[39]  E. Næsset Determination of mean tree height of forest stands using airborne laser scanner data , 1997 .

[40]  S. Pitkänen Correlation between stand structure and ground vegetation: an analytical approach , 1997, Plant Ecology.

[41]  Hannu Hökkä,et al.  Models for predicting stand development in MELA System , 2002 .