EVIDENCE FOR DUST CLEARING THROUGH RESOLVED SUBMILLIMETER IMAGING

Mid-infrared spectrophotometric observations have revealed a small subclass of circumstellar disks with spectral energy distributions (SEDs) suggestive of large inner gaps with low dust content. However, such data provide only an indirect and model-dependent method of finding central holes. Imaging of protoplanetry disks provides an independent check of SED modeling. We present here the direct characterization of three 33-47 AU radii inner gaps, in the disks around LkHα 330, SR 21N, and HD 135344B, via 340 GHz (880 μm) dust continuum aperture synthesis observations obtained with the Submillimeter Array (SMA). The large gaps are fully resolved at ~0".3 by the SMA data and mostly empty of dust, with less than (1-7.5) × 10^(–6)M_⊙ of fine grained solids inside the holes. Gas (as traced by atomic accretion markers and CO 4.7 μm rovibrational emission) is still present in the inner regions of all three disks. For each, the inner hole exhibits a relatively steep rise in dust emission to the outer disk, a feature more likely to originate from the gravitational influence of a companion body than from a process expected to show a more shallow gradient like grain growth. Importantly, the good agreement between the spatially resolved data and spectrophotometry-based models lends confidence to current interpretations of SEDs, wherein the significant dust emission deficits arise from disks with inner gaps or holes. Further SED-based searches can therefore be expected to yield numerous additional candidates that can be examined at high spatial resolution.

[1]  E. Chapillon,et al.  Cavities in inner disks : the GM Aurigae case , 2008 .

[2]  C. Clarke,et al.  Photoevaporation of protoplanetary discs - II. Evolutionary models and observable properties , 2006, astro-ph/0603254.

[3]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[4]  J. Augereau,et al.  Cold Disks: Spitzer Spectroscopy of Disks around Young Stars with Large Gaps , 2007, 0707.0304.

[5]  LkHα 330: Evidence for Dust Clearing through Resolved Submillimeter Imaging , 2008 .

[6]  L. Hartmann,et al.  Mid-infrared Spectroscopy of Disks around Classical T Tauri Stars , 2004, astro-ph/0605464.

[7]  Heidelberg,et al.  The structure of protoplanetary disks surrounding three young intermediate mass stars: I. Resolving the disk rotation in the [OI] 6300 Å line , 2008, 0802.0707.

[8]  L. Testi,et al.  Accretion in the ρ-Ophiuchi pre-main sequence stars , 2006, astro-ph/0602618.

[9]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .

[10]  N. Calvet,et al.  An Inner Hole in the Disk around TW Hydrae Resolved in 7 mm Dust Emission , 2007, 0704.2422.

[11]  P. Tuthill,et al.  SPATIALLY RESOLVED MID-INFRARED IMAGING OF THE SR 21 TRANSITION DISK , 2009, 0905.3388.

[12]  A. Frank,et al.  Observational Properties of Protoplanetary Disk Gaps , 2005, astro-ph/0508630.

[13]  J. Pety,et al.  Resolving the inner dust disks surrounding LkCa 15 and MWC 480 at mm wavelengths , 2006, astro-ph/0610200.

[14]  Geoffrey A. Blake,et al.  HIGH-RESOLUTION 5 μm SPECTROSCOPY OF TRANSITIONAL DISKS , 2009 .

[15]  Geoffrey A. Blake,et al.  Spectroastrometric Imaging of Molecular Gas within Protoplanetary Disk Gaps , 2008, 0805.3314.

[16]  Mid-infrared imaging of the circumstellar dust around three Herbig Ae stars: HD 135344, CQ Tau, and HD 163296 , 2006, astro-ph/0608615.

[17]  S. Ida,et al.  Dust Growth and Settling in Protoplanetary Disks and Disk Spectral Energy Distributions. I. Laminar Disks , 2005, astro-ph/0502287.

[18]  David E. Trilling,et al.  Decay of Planetary Debris Disks , 2005 .

[19]  M. Min,et al.  A 10 μm spectroscopic survey of Herbig Ae star disks: Grain growth and crystallization , 2005, astro-ph/0503507.

[20]  T. Greene,et al.  Astrophysics of Young Star Binaries , 2002, astro-ph/0211376.

[21]  Luis Carrasco,et al.  A STUDY OF THE YOUNG CLUSTER IC 348. , 1974 .

[22]  Dust filtration at gap edges: Implications for the spectral energy distributions of discs with embedded planets , 2006, astro-ph/0609808.

[23]  A. Boss,et al.  Protoplanetary Disks, Mid-Infrared Dips, and Disk Gaps , 1996 .

[24]  M. E. van den Ancker,et al.  The structure of the protoplanetary disk surrounding three young intermediate mass stars II. Spatially resolved dust and gas distribution , 2008, 0809.3947.

[25]  A. Boss,et al.  Protostars and Planets , 1998, Science.

[26]  C. Dominik,et al.  UvA-DARE ( Digital Academic Repository ) Flaring vs . self-shadowed disks : The SEDs of Herbig Ae / Be stars , 2004 .

[27]  Michael F. Skrutskie,et al.  Circumstellar Material Associated with Solar-Type Pre-Main-Sequence Stars: A Possible Constraint on the Timescale for Planet Building , 1989 .

[28]  David Wilner,et al.  Evidence for a Developing Gap in a 10 Myr Old Protoplanetary Disk , 2002 .

[29]  M. Barlow,et al.  High Resolution Spectroscopy of Vega-Like Stars , 1997 .

[30]  T. Henning,et al.  Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks , 2007, 0711.2192.

[31]  B. Shustov Protostars and Planets II , 1987 .

[32]  E. Chiang,et al.  Inside-out evacuation of transitional protoplanetary discs by the magneto-rotational instability , 2007, 0706.1241.

[33]  S. Beckwith,et al.  Millimeter-wave continuum measurements of young stars , 1995 .

[34]  C. G. Tinney,et al.  Observed Properties of Exoplanets : Masses, Orbits, and Metallicities(Origins : From Early Universe to Extrasolar Planets) , 2005 .

[35]  R. Mathieu,et al.  Testing Protoplanetary Disk Alignment in Young Binaries , 2004 .

[36]  L. Hartmann,et al.  Probing the Dust and Gas in the Transitional Disk of CS Cha with Spitzer , 2007, 0707.0019.

[37]  P. Goldreich,et al.  Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.

[38]  High-Resolution Submillimeter Constraints on Circumstellar Disk Structure , 2006, astro-ph/0610813.

[39]  ESO,et al.  A VLT/NACO survey for triple and quadruple systems among visual pre-main sequence binaries , , 2006, astro-ph/0608674.

[40]  Aki Roberge,et al.  Coronagraphic Imaging of Pre-Main-Sequence Stars with the Hubble Space Telescope Space Telescope Imaging Spectrograph. I. The Herbig Ae Stars , 2005 .

[41]  Sean M. Andrews,et al.  PROTOPLANETARY DISK STRUCTURES IN OPHIUCHUS , 2009, 0906.0730.

[42]  C. Clarke,et al.  The dispersal of circumstellar discs: the role of the ultraviolet switch , 2001 .

[43]  M. Ireland,et al.  The Disk Around CoKu Tauri/4: Circumbinary, Not Transitional , 2008, 0803.2044.

[44]  Jonathan P. Williams,et al.  A SPATIALLY RESOLVED INNER HOLE IN THE DISK AROUND GM AURIGAE , 2009, 0903.4455.

[45]  Martin G. Cohen,et al.  Observational studies of pre-main-sequence evolution. , 1979 .

[46]  Paul S. Smith,et al.  REVEALING THE STRUCTURE OF A PRE-TRANSITIONAL DISK: THE CASE OF THE HERBIG F STAR SAO 206462 (HD 135344B) , 2009 .

[47]  F. J. Low,et al.  DISCOVERY OF A SHELL AROUND ALPHA-LYRAE , 1984 .

[48]  Hst/nicmos2 coronagraphic observations of the circumstellar environment of three old pms stars: hd 100546, sao 206462 and mwc 480 , 2000, astro-ph/0009496.