Tight analysis of a collisionless robot gathering algorithm

We consider the fundamental problem of gathering a set of n robots in the Euclidean plane which have a physical extent and hence they cannot share their positions with other robots. The objective is to determine a minimum time schedule to gather the robots as close together as possible around a predefined gathering point avoiding collisions. This problem has applications in many real world scenarios including fast autonomous coverage formation. Cord-Landwehr et al. (SOFSEM 2011) gave a local greedy algorithm in a synchronous setting and proved that, for the discrete version of the problem where robots movements are restricted to the positions on an integral grid, their algorithm solves this problem in O(nR) rounds, where R is the distance from the farthest initial robot position to the gathering point. In this paper, we improve significantly the round complexity of their algorithm to R + 2 · (n - 1) rounds. We also prove that there are initial configurations of n robots in this problem where at least R + (n - 1) over 2 rounds are needed by any local greedy algorithm. Furthermore, we improve the lower bound to R + (n - 1) rounds for the algorithm of Cord-Landwehr et al.. These results altogether provide a tight runtime analysis of their algorithm.

[1]  Xavier Défago,et al.  Gathering Asynchronous Mobile Robots with Inaccurate Compasses , 2006, OPODIS.

[2]  Friedhelm Meyer auf der Heide,et al.  A Continuous, Local Strategy for Constructing a Short Chain of Mobile Robots , 2010, SIROCCO.

[3]  Friedhelm Meyer auf der Heide,et al.  Collisionless Gathering of Robots with an Extent , 2011, SOFSEM.

[4]  Friedhelm Meyer auf der Heide,et al.  Optimal strategies for maintaining a chain of relays between an explorer and a base camp , 2009, Theor. Comput. Sci..

[5]  Assaf Schuster,et al.  Greedy hot-potato routing on the two-dimensional mesh , 1995, Distributed Computing.

[6]  Masafumi Yamashita,et al.  Distributed memoryless point convergence algorithm for mobile robots with limited visibility , 1999, IEEE Trans. Robotics Autom..

[7]  Sayaka Kamei,et al.  Randomized Gathering of Mobile Robots with Local-Multiplicity Detection , 2009, SSS.

[8]  Friedhelm Meyer auf der Heide,et al.  A New Approach for Analyzing Convergence Algorithms for Mobile Robots , 2011, ICALP.

[9]  Reuven Cohen,et al.  Robot Convergence via Center-of-Gravity Algorithms , 2004, SIROCCO.

[10]  Friedhelm Meyer auf der Heide,et al.  A local O(n2) gathering algorithm , 2010, SPAA '10.

[11]  Andrzej Pelc,et al.  Gathering few fat mobile robots in the plane , 2006, Theor. Comput. Sci..

[12]  Friedhelm Meyer auf der Heide,et al.  Fast Collisionless Pattern Formation by Anonymous, Position-Aware Robots , 2014, OPODIS.

[13]  Reuven Cohen,et al.  Convergence Properties of the Gravitational Algorithm in Asynchronous Robot Systems , 2004, SIAM J. Comput..

[14]  Yoshiaki Katayama,et al.  Gathering Autonomous Mobile Robots with Dynamic Compasses: An Optimal Result , 2007, DISC.

[15]  Euripides Markou,et al.  Gathering asynchronous oblivious mobile robots in a ring , 2006, Theor. Comput. Sci..

[16]  Ivan Stojmenovic,et al.  Localized Sensor Self-Deployment for Guaranteed Coverage Radius Maximization , 2009, 2009 IEEE International Conference on Communications.

[17]  Friedhelm Meyer auf der Heide,et al.  Energy-efficient strategies for building short chains of mobile robots locally , 2011, Theor. Comput. Sci..

[18]  Noa Agmon,et al.  Fault-tolerant gathering algorithms for autonomous mobile robots , 2004, SODA '04.

[19]  Sruti Gan Chaudhuri,et al.  Gathering Asynchronous Transparent Fat Robots , 2010, ICDCIT.

[20]  Maria Gradinariu Potop-Butucaru,et al.  Connectivity-Preserving Scattering of Mobile Robots with Limited Visibility , 2010, SSS.

[21]  Shuai Li,et al.  Formation Control and Tracking for Co-operative Robots with Non-holonomic Constraints , 2016, J. Intell. Robotic Syst..

[22]  Sruti Gan Chaudhuri,et al.  Circle Formation by Asynchronous Fat Robots with Limited Visibility , 2012, ICDCIT.

[23]  Giuseppe Prencipe,et al.  Impossibility of gathering by a set of autonomous mobile robots , 2007, Theor. Comput. Sci..

[24]  Tamás Lukovszki,et al.  Fast Localized Sensor Self-Deployment for Focused Coverage , 2013, ALGOSENSORS.

[25]  Shuai Li,et al.  Distributed Multirobot Formation and Tracking Control in Cluttered Environments , 2016, ACM Trans. Auton. Adapt. Syst..

[26]  Gábor Fazekas,et al.  Gathering of Fat Robots with Limited Visibility and without Global Navigation , 2012, ICAISC.

[27]  Giovanni Viglietta,et al.  Getting Close without Touching , 2012, SIROCCO.

[28]  Ivan Stojmenovic,et al.  Focused-coverage by mobile sensor networks , 2009, 2009 IEEE 6th International Conference on Mobile Adhoc and Sensor Systems.

[29]  Friedhelm Meyer auf der Heide,et al.  A tight runtime bound for synchronous gathering of autonomous robots with limited visibility , 2011, SPAA '11.

[30]  Chryssis Georgiou,et al.  A distributed algorithm for gathering many fat mobile robots in the plane , 2013, PODC '13.

[31]  Friedhelm Meyer auf der Heide,et al.  Optimal and competitive runtime bounds for continuous, local gathering of mobile robots , 2012, SPAA '12.

[32]  Friedhelm Meyer auf der Heide,et al.  Convergence of local communication chain strategies via linear transformations: or how to trade locality for speed , 2011, SPAA '11.

[33]  Masafumi Yamashita,et al.  Formation and agreement problems for synchronous mobile robots with limited visibility , 1995, Proceedings of Tenth International Symposium on Intelligent Control.

[34]  Ivan Stojmenovic,et al.  Strictly Localized Sensor Self-Deployment for Optimal Focused Coverage , 2011, IEEE Transactions on Mobile Computing.

[35]  Gokarna Sharma,et al.  Tight analysis of a collisionless robot gathering algorithm , 2015, IROS.