Sensitivity analysis of the Lanczos reduction

For a given real n x n matrix A and initial vectors v(1) and w(1), we examine the sensitivity of the tridiagonal matrix T and the biorthogonal sets of vectors of the Lanczos reduction to small changes in A, v(1) and w(1). We also consider the sensitivity of the developing Krylov subspaces. Copyright (C) 1999 John Wiley & Sons, Ltd.

[1]  Sergey V. Kuznetsov Perturbation bounds of the krylov bases and associated hessenberg forms , 1997 .

[2]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[3]  P. Dooren,et al.  Asymptotic Waveform Evaluation via a Lanczos Method , 1994 .

[4]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[5]  A. Sluis Condition numbers and equilibration of matrices , 1969 .

[6]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[7]  S. Godunov,et al.  Condition number of the Krylov bases and subspaces , 1996 .

[8]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[9]  Roland W. Freund,et al.  Small-Signal Circuit Analysis and Sensitivity Computations with the PVL Algorithm , 1996 .

[10]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[11]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[12]  Nicholas J. Highham A survey of condition number estimation for triangular matrices , 1987 .

[13]  Roland W. Freund,et al.  Efficient linear circuit analysis by Pade´ approximation via the Lanczos process , 1994, EURO-DAC '94.

[14]  Xiao-Wen Chang,et al.  Perturbation analysis of some matrix factorizations , 1997 .

[15]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[16]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[17]  B. Parlett,et al.  Forward Instability of Tridiagonal QR , 1993, SIAM J. Matrix Anal. Appl..

[18]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .