Multicast capacity for hybrid wireless networks

We study the multicast capacity of a random wireless network consisting of ordinary wireless nodes and base stations, known as a hybrid network. Assume that <i>n</i> ordinary wireless nodes are randomly deployed in a square region and all nodes have the uniform transmission range <i>r</i> and uniform interference range <i>R</i>><i>r</i>. We further assume that each ordinary wireless node can transmit/receive at <i>W</i> bits/second over a common wireless channel. In addition, there are <i>m</i> additional base stations (neither source nodes nor receiver nodes) placed regularly in this square region and connected by a high-bandwidth wired network. For each ordinary node <i>v</i>, we randomly pick <i>k</i>-1 nodes from the other <i>n</i>-1 ordinary nodes as the receivers of the multicast session at node <i>v</i>. The aggregated multicast capacity is defined as the total data rate of all multicast sessions in this hybrid network. We derive asymptotic upper bounds and lower bounds on multicast capacity of the hybrid wireless networks. The total multicast capacity is <i>O</i>(√<i>n</i> /√log <i>n</i> · √<i>m</i>/<i>k</i> · <i>W</i>) when <i>k</i> = <i>O</i>(<i>n</i> / log <i>n</i>), <i>k</i> = <i>O</i>(<i>m</i>), <i>k</i> / √<i>m</i> → ∞ and <i>m</i> = <i>o</i>(<i>a</i><sup>2</sup> / <i>r</i><sup>2</sup>); the total multicast capacity is Θ(√<i>n</i> / √log <i>n</i> · <i>W</i> / √<i>k</i>) when <i>k</i> = <i>O</i>(<i>n</i>/log <i>n</i>), <i>k</i> = Ω(<i>m</i>) and <i>m</i>/<i>k</i> → <i>O</i>. When <i>k</i> = <i>O</i>(<i>n</i>/log <i>n</i>) and <i>k</i> = <i>O</i>(√<i>m</i>), the upper bound for minimum multicast capacity is at most <i>O</i>(<i>r</i>·<i>n</i>/<i>a</i> · √<i>m</i> · <i>W</i>/<i>k</i>) and is at least Ω(<i>W</i>) respectively. When <i>k</i> =Ω<sup>α</sup>(<i>n</i>/log <i>n</i>), the multicast capacity is Θ(<i>W</i>).

[1]  Bulent Tavli Broadcast capacity of wireless networks , 2006 .

[2]  Shaojie Tang,et al.  Multicast capacity for large scale wireless ad hoc networks , 2007, MobiCom '07.

[3]  Rudolf H. Riedi,et al.  Bounds for the capacity of wireless multihop networks imposed by topology and demand , 2007, MobiHoc '07.

[4]  Alireza Keshavarz-Haddad,et al.  Broadcast capacity in multihop wireless networks , 2006, MobiCom '06.

[5]  Philippe Jacquet,et al.  Multicast Scaling Properties in Massively Dense Ad Hoc Networks , 2005, 11th International Conference on Parallel and Distributed Systems (ICPADS'05).

[6]  Paolo Giaccone,et al.  Capacity scaling in delay tolerant networks with heterogeneous mobile nodes , 2007, MobiHoc '07.

[7]  Chen-Nee Chuah,et al.  Capacity scaling in MIMO Wireless systems under correlated fading , 2002, IEEE Trans. Inf. Theory.

[8]  Donald F. Towsley,et al.  Capacity of a wireless ad hoc network with infrastructure , 2007, MobiHoc '07.

[9]  Michael Gastpar,et al.  On the capacity of wireless networks: the relay case , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[10]  David Tse,et al.  Mobility increases the capacity of ad-hoc wireless networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[11]  M. Penrose The longest edge of the random minimal spanning tree , 1997 .

[12]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[13]  Leandros Tassiulas,et al.  Throughput capacity of random ad hoc networks with infrastructure support , 2003, MobiCom '03.

[14]  Xiang-Yang Li Multicast capacity of wireless ad hoc networks , 2009, TNET.

[15]  R. Srikant,et al.  The Multicast Capacity of Large Multihop Wireless Networks , 2007, IEEE/ACM Transactions on Networking.

[16]  Rudolf H. Riedi,et al.  On the Broadcast Capacity of Multihop Wireless Networks: Interplay of Power, Density and Interference , 2007, 2007 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks.