Bayesian approaches to the problem of sparse tables in log-linear modeling

This paper presents Bayesian approaches to parameter estimation in the log-linear analysis of sparse frequency tables. The proposed methods overcome the non-estimability problems that may occur when applying maximum likelihood estimation. A crucial point when using Bayesian methods is the specification of the prior distributions for the model parameters. We discuss the various possible priors and assess their influence on the parameter estimates by two empirical examples in which maximum likelihood estimation gives problems. For the practical implementation of the Bayesian estimation methods, we used a Metropolis algorithm.

[1]  Donald B. Rubin,et al.  Multiple Imputation of Industry and Occupation Codes in Census Public-use Samples Using Bayesian Logistic Regression , 1991 .

[2]  Dale J. Poirier,et al.  Jeffreys' prior for logit models , 1994 .

[3]  Dale J. Poirier,et al.  An Empirical Investigation of Wagner's Hypothesis by Using a Model Occurrence Framework , 1995 .

[4]  Dale J. Poirier,et al.  Rank‐ordered logit models: An empirical analysis of Ontario voter preferences , 1994 .

[5]  Jeroen K. Vermunt,et al.  LEM: A general program for the analysis of categorical data. Users manual , 1997 .

[6]  J. Bernardo Reference Posterior Distributions for Bayesian Inference , 1979 .

[7]  Eric R. Ziegel,et al.  Multivariate Statistical Modelling Based on Generalized Linear Models , 2002, Technometrics.

[8]  Alan Agresti,et al.  Nearly exact tests of conditional independence and marginal homogeneity for sparse contingency tables , 1997 .

[9]  L. A. Goodman The Analysis of Multidimensional Contingency Tables: Stepwise Procedures and Direct Estimation Methods for Building Models for Multiple Classifications , 1971 .

[10]  Clifford C. Clogg,et al.  Some Common Problems in Log-Linear Analysis , 1987 .

[11]  L. A. Goodman The Multivariate Analysis of Qualitative Data: Interactions among Multiple Classifications , 1970 .

[12]  David E. Booth,et al.  Analysis of Incomplete Multivariate Data , 2000, Technometrics.

[13]  James O. Berger,et al.  Ordered group reference priors with application to the multinomial problem , 1992 .

[14]  Alan Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[15]  James O. Berger,et al.  A Catalog of Noninformative Priors , 1996 .

[16]  Jeroen K. Vermunt,et al.  'EM: A general program for the analysis of categorical data 1 , 1997 .

[17]  Alan Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[18]  Gary Koop,et al.  Bayesian analysis of logit models using natural conjugate priors , 1993 .

[19]  Purushottam W. Laud,et al.  On Bayesian Analysis of Generalized Linear Models Using Jeffreys's Prior , 1991 .