Automorphism groups of tetravalent Cayley graphs on regular p-groups

Let Cay(G,S) be a connected tetravalent Cayley graph on a regular p-group G and let Aut(G) be the automorphism group of G. In this paper, it is proved that, for each prime p 2,5, the automorphism group of the Cayley graph Cay(G,S) is the semidirect product R(G)@?Aut(G,S) where R(G) is the right regular representation of G and Aut(G,S)={@[email protected]?Aut(G)|S^@a=S}. The proof depends on the classification of finite simple groups. This implies that if p 2,5 then the Cayley graph Cay(G,S) is normal, namely, the automorphism group of Cay(G,S) contains R(G) as a normal subgroup.

[1]  Jie Wang,et al.  On cubic Cayley graphs of finite simple groups , 2002, Discret. Math..

[2]  J. Chen,et al.  A Family of Nonnormal Cayley Digraphs , 2001 .

[3]  Mingyao Xu,et al.  On the Normality of Cayley Graphs of Abelian Groups , 1998 .

[4]  Edward Dobson,et al.  Transitive Permutation Groups of Prime-Squared Degree , 2000, math/0012192.

[5]  B. Huppert Endliche Gruppen I , 1967 .

[6]  B. Alspach Point-symmetric graphs and digraphs of prime order and transitive permutation groups of prime degree☆ , 1973 .

[7]  C. Praeger Finite normal edge-transitive Cayley graphs , 1999, Bulletin of the Australian Mathematical Society.

[8]  W. Scott,et al.  Group Theory. , 1964 .

[9]  Mingyao Xu,et al.  Normal Cayley graphs of finite groups , 1998 .

[10]  J. Kwak,et al.  AUTOMORPHISM GROUPS OF 4-VALENT CONNECTED CAYLEY GRAPHS OF p-GROUPS , 2001 .

[11]  H. Wielandt,et al.  Finite Permutation Groups , 1964 .

[12]  Y. Baik,et al.  THE NORMALITY OF CAYLEY GRAPHS OF FINITE ABELIAN GROUPS WITH VALENCY 5 , 2000 .

[13]  Ming-Yao Xu,et al.  Automorphism groups and isomorphisms of Cayley digraphs , 1998, Discret. Math..

[14]  Michio Suzuki Group Theory I , 1981 .

[15]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[16]  D. Robinson A Course in the Theory of Groups , 1982 .

[17]  N. Biggs Algebraic Graph Theory , 1974 .

[18]  Chris D. Godsil,et al.  On the full automorphism group of a graph , 1981, Comb..

[19]  Aleksander Malnic,et al.  Group actions, coverings and lifts of automorphisms , 1998, Discret. Math..

[20]  D. Gorenstein Finite Simple Groups: An Introduction to Their Classification , 1982 .

[21]  Caiheng Li On isomorphisms of connected Cayley graphs, III , 1998, Bulletin of the Australian Mathematical Society.

[22]  Yan-Quan Feng,et al.  Automorphism Groups of 2-Valent Connected Cayley Digraphs on Regular p-Groups , 2002, Graphs Comb..

[23]  G. Sabidussi On a class of fixed-point-free graphs , 1958 .