Recent Advances in Biodegradable Metals for Medical Sutures: A Critical Review

Sutures that biodegrade and dissolve over a period of several weeks are in great demand to stitch wounds and surgical incisions. These new materials are receiving increased acceptance across surgical procedures whenever permanent sutures and long-term care are not needed. Unfortunately, both inflammatory responses and adverse local tissue reactions in the close-to-stitching environment are often reported for biodegradable polymeric sutures currently used by the medical community. While bioabsorbable metals are predominantly investigated and tested for vascular stent or osteosynthesis applications, they also appear to possess adequate bio-compatibility, mechanical properties, and corrosion stability to replace biodegradable polymeric sutures. In this Review, biodegradable alloys made of iron, magnesium, and zinc are critically evaluated as potential materials for the manufacturing of soft and hard tissue sutures. In the case of soft tissue closing and stitching, these metals have to compete against currently available degradable polymers. In the case of hard tissue closing and stitching, biodegradable sternal wires could replace the permanent sutures made of stainless steel or titanium alloys. This Review discusses the specific materials and degradation properties required by all suture materials, summarizes current suture testing protocols and provides a well-grounded direction for the potential future development of biodegradable metal based sutures.

[1]  T. Aizawa,et al.  Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank's solution , 2001 .

[2]  J C Middleton,et al.  Synthetic biodegradable polymers as orthopedic devices. , 2000, Biomaterials.

[3]  J. Génin,et al.  Mechanism of formation of magnetite from ferrous hydroxide in aqueous corrosion processes , 1989 .

[4]  N. Solomons,et al.  On risks and benefits of iron supplementation recommendations for iron intake revisited. , 2007, Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements.

[5]  Suming Li,et al.  Biodegradation of PLA/GA polymers: increasing complexity. , 1994, Biomaterials.

[6]  M. Peuster,et al.  A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits , 2001, Heart.

[7]  A. Albertsson Degradable aliphatic polyesters , 2002 .

[8]  S. Pai,et al.  Sutures and suturing techniques in skin closure. , 2009, Indian journal of dermatology, venereology and leprology.

[9]  Minna Hakkarainen,et al.  Aliphatic polyesters : Abiotic and biotic degradation and degradation products , 2002 .

[10]  W. Friess,et al.  New Anti-infective Coatings of Surgical Sutures Based on a Combination of Antiseptics and Fatty Acids , 2009, Journal of biomaterials science. Polymer edition.

[11]  Keith D K Luk,et al.  A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. , 2010, Biomaterials.

[12]  R. Edlich,et al.  Syneture stainless STEEL suture. A collective review of its performance in surgical wound closure. , 2006, Journal of long-term effects of medical implants.

[13]  H. Hauser,et al.  The formation of an organic coat and the release of corrosion microparticles from metallic magnesium implants. , 2013, Acta biomaterialia.

[14]  C. Klose,et al.  The Manufacture of Resorbable Suture Material from Magnesium – Drawing and Stranding of Thin Wires , 2011 .

[15]  J. Drelich,et al.  Magnesium in the murine artery: probing the products of corrosion. , 2014, Acta biomaterialia.

[16]  Arthur A. Zierold,et al.  Reaction of Bone to Various Metals , 1924 .

[17]  Yufeng Zheng,et al.  The development of binary Mg-Ca alloys for use as biodegradable materials within bone. , 2008, Biomaterials.

[18]  V. Gott,et al.  Biomechanical study of sternal closure techniques. , 1993, The Annals of thoracic surgery.

[19]  W C de Bruijn,et al.  Late degradation tissue response to poly(L-lactide) bone plates and screws. , 1995, Biomaterials.

[20]  Frank Witte,et al.  Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. , 2010, Acta biomaterialia.

[21]  Peter Wriggers,et al.  Degradation behaviour of LAE442-based plate-screw-systems in an in vitro bone model. , 2015, Materials science & engineering. C, Materials for biological applications.

[22]  P. Uggowitzer,et al.  Design strategy for biodegradable Fe-based alloys for medical applications. , 2010, Acta biomaterialia.

[23]  W. Walsh,et al.  Stress relaxation and creep: viscoelastic properties of common suture materials used for flexor tendon repair. , 2008, The Journal of hand surgery.

[24]  G. O. Hofmann,et al.  Biodegradable implants in traumatology: a review on the state-of-the-art , 2004, Archives of Orthopaedic and Trauma Surgery.

[25]  M. Schaldach,et al.  A Polyhydroxybutyrate Biodegradable Stent: Preliminary Experience in the Rabbit , 2002, CardioVascular and Interventional Radiology.

[26]  W C de Bruijn,et al.  Foreign body reactions to resorbable poly(L-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. , 1993, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[27]  C. M. Agrawal,et al.  Orthopaedic applications for PLA-PGA biodegradable polymers. , 1998, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[28]  F. Beckmann,et al.  In vivo corrosion and corrosion protection of magnesium alloy LAE442. , 2010, Acta biomaterialia.

[29]  R. L. Smith,et al.  Viability and proliferation of pluripotential cells delivered to tendon repair sites using bioactive sutures--an in vitro study. , 2011, The Journal of hand surgery.

[30]  Frank Witte,et al.  The history of biodegradable magnesium implants: a review. , 2010, Acta biomaterialia.

[31]  Brian J. Tighe,et al.  A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies , 1998 .

[32]  W. Brattain,et al.  ELECTROCHEMICAL PRECIPITATION OF HUMAN BLOOD CELLS AND ITS POSSIBLE RELATION TO INTRAVASCULAR THROMBOSIS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[33]  A R Boccaccini,et al.  Biomedical coatings on magnesium alloys - a review. , 2012, Acta biomaterialia.

[34]  J. Cahoon,et al.  Corrosion fatigue of surgical stainless steel in synthetic physiological solution. , 1981, Journal of biomedical materials research.

[35]  H T Keçeligil,et al.  Sternal closure with resorbable synthetic loop suture material in children. , 2000, Journal of pediatric surgery.

[36]  J. Seitz,et al.  Characterization of MgNd2 alloy for potential applications in bioresorbable implantable devices. , 2012, Acta biomaterialia.

[37]  M Saleh,et al.  A biomechanical study of median sternotomy closure techniques. , 1999, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[38]  R. Moy,et al.  A review of sutures and suturing techniques. , 1992, The Journal of dermatologic surgery and oncology.

[39]  H. Lee,et al.  Reduction of inflammatory reaction of poly(d,l-lactic-co-glycolic Acid) using demineralized bone particles. , 2008, Tissue engineering. Part A.

[40]  Friedrich-Wilhelm Bach,et al.  Comparison of the Corrosion Behavior of Coated and Uncoated Magnesium Alloys in an In Vitro Corrosion Environment , 2011 .

[41]  G. Song,et al.  Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance , 2003 .

[42]  D. Williams,et al.  The in vivo and in vitro degradation of poly(glycolic acid) suture material as a function of applied strain. , 1984, Biomaterials.

[43]  Robert Langer,et al.  In vivo degradation characteristics of poly(glycerol sebacate). , 2003, Journal of biomedical materials research. Part A.

[44]  Henning Windhagen,et al.  Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study , 2013, BioMedical Engineering OnLine.

[45]  Berend Denkena,et al.  Biodegradable magnesium implants for orthopedic applications , 2012, Journal of Materials Science.

[46]  Vincent Vivier,et al.  An Impedance Investigation of the Mechanism of Pure Magnesium Corrosion in Sodium Sulfate Solutions , 2007 .

[47]  M. Kääb,et al.  Osteolysis after open shoulder stabilization using a new bio-resorbable bone anchor: a prospective, non-randomized clinical trial. , 2002, Injury.

[48]  C. Chu,et al.  The in-vitro degradation of poly(glycolic acid) sutures--effect of pH. , 1981, Journal of biomedical materials research.

[49]  H. Maier,et al.  Magnesium degradation products: effects on tissue and human metabolism. , 2014, Journal of biomedical materials research. Part A.

[50]  M. Carboneras,et al.  Comportamiento frente a la corrosión y biocompatibilidad in vitro/in vivo de la aleación AZ31 modificada superficialmente , 2011 .

[51]  Ke Yang,et al.  Biodegradable Materials for Bone Repairs: A Review , 2013 .

[52]  J A von Fraunhofer,et al.  Tensile strength of suture materials. , 1985, Journal of biomedical materials research.

[53]  P. Törmälä,et al.  Bioabsorbable polymers: Materials technology and surgical applications , 1998, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[54]  D E Cutright,et al.  Tissue reaction to the biodegradable polylactic acid suture. , 1971, Oral surgery, oral medicine, and oral pathology.

[55]  Yang Ke,et al.  Preliminary study of biodegradation of AZ31B magnesium alloy , 2007 .

[56]  S. Suzuki,et al.  Biodegradable Pin Fixation of Osteochondral Fragments of the Knee , 1996, Clinical orthopaedics and related research.

[57]  M. Lindberg,et al.  Water and ion distribution profiles in human skin. , 1993, Acta dermato-venereologica.

[58]  Yufeng Zheng,et al.  A review on magnesium alloys as biodegradable materials , 2010 .

[59]  Shizhe Song,et al.  A Possible Biodegradable Magnesium Implant Material , 2007 .

[60]  Robert Langer,et al.  Visual Evidence of Acidic Environment Within Degrading Poly(lactic-co-glycolic acid) (PLGA) Microspheres , 2004, Pharmaceutical Research.

[61]  W. Seare,et al.  Biomedical Materials in Surgery , 1974 .

[62]  D. Kohn,et al.  Effects of pH on human bone marrow stromal cells in vitro: implications for tissue engineering of bone. , 2002, Journal of biomedical materials research.

[63]  E. Wolner,et al.  Triclosan-coated sutures for the reduction of sternal wound infections: economic considerations. , 2007, The Annals of thoracic surgery.

[64]  N. Hansen,et al.  Hall–Petch relation and boundary strengthening , 2004 .

[65]  J. Kohn,et al.  Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. , 1991, Biomaterials.

[66]  R. Edlich,et al.  Technical considerations in knot construction. Part II. Interrupted dermal suture closure. , 1997, The Journal of emergency medicine.

[67]  Y. Ikada,et al.  The pH dependence of monofilament sutures on hydrolytic degradation. , 2001, Journal of biomedical materials research.

[68]  Chad Johnson,et al.  The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. , 2004, Biomaterials.

[69]  S. Altıntaş,et al.  The microstructural control of cast and mechanical properties of zinc-aluminium alloys , 1993, Journal of Materials Science.

[70]  A. Göpferich,et al.  Why degradable polymers undergo surface erosion or bulk erosion. , 2002, Biomaterials.

[71]  P. Nielsen,et al.  Mechanical characterisation of in vivo human skin using a 3D force-sensitive micro-robot and finite element analysis , 2011, Biomechanics and modeling in mechanobiology.

[72]  M. Deng,et al.  Effect of load and temperature on in vitro degradation of poly(glycolide-co-L-lactide) multifilament braids. , 2005, Biomaterials.

[73]  J. Coltart,et al.  ‘Miracle stents’ - a future without restenosis , 2007, McGill journal of medicine : MJM : an international forum for the advancement of medical sciences by students.

[74]  Ramon Bakerjian,et al.  Tool and Manufacturing Engineers Handbook , 1989 .

[75]  Frank C. Porter,et al.  Zinc Handbook: Properties, Processing, and Use In Design , 1991 .

[76]  N. Tsuji,et al.  Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing , 2002 .

[77]  A. Ribéri,et al.  Evaluation of an Absorbable Suture for Sternal Closure in Pediatric Cardiac Surgery , 1992, Journal of cardiac surgery.

[78]  H. Hermawan Biodegradable Metals: State of the Art , 2012 .

[79]  D. Bormann,et al.  The Manufacture of Resorbable Suture Material from Magnesium , 2010 .

[80]  M. Wei,et al.  Corrosion process of pure magnesium in simulated body fluid , 2008 .

[81]  Fotios Papadimitrakopoulos,et al.  A Review of the Biocompatibility of Implantable Devices: Current Challenges to Overcome Foreign Body Response , 2008, Journal of diabetes science and technology.

[82]  Hyoun‐Ee Kim,et al.  Hydroxyapatite coating on magnesium with MgF2 interlayer for enhanced corrosion resistance and biocompatibility , 2011, Journal of materials science. Materials in medicine.

[83]  C. Laurencin,et al.  Biodegradable polymers as biomaterials , 2007 .

[84]  Andrea Meyer-Lindenberg,et al.  In Vivo Degradation Behavior of the Magnesium Alloy LANd442 in Rabbit Tibiae , 2011, Materials.

[85]  I. Trail,et al.  An evaluation of suture materials used in tendon surgery. , 1989, Journal of hand surgery.

[86]  J. V. von Fraunhofer,et al.  Tensile properties of suture materials. , 1988, Biomaterials.

[87]  J. Ng,et al.  The absorption and excretion of fluoride and arsenic in humans. , 2002, Toxicology letters.

[88]  Jeremy Goldman,et al.  A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. , 2012, Journal of biomedical materials research. Part B, Applied biomaterials.

[89]  O. Böstman,et al.  Foreign-body reactions to polyglycolide screws. Observations in 24/216 malleolar fracture cases. , 1992, Acta orthopaedica Scandinavica.

[90]  M. Peuster,et al.  Are resorbable implants about to become a reality? , 2006, Cardiology in the Young.

[91]  Guang-Ling Song,et al.  Control of biodegradation of biocompatable magnesium alloys , 2007 .

[92]  L. Claes,et al.  Mechanical characterization of biodegradable implants. , 1992, Clinical materials.

[93]  O. Ruano,et al.  Corrosion inhibition of powder metallurgy Mg by fluoride treatments. , 2010, Acta biomaterialia.

[94]  Nick Birbilis,et al.  A survey of bio-corrosion rates of magnesium alloys , 2010 .

[95]  Minna Kellomäki,et al.  Drug-Eluting Biodegradable Poly-D/L-Lactic Acid Vascular Stents: An Experimental Pilot Study , 2005, Journal of endovascular therapy : an official journal of the International Society of Endovascular Specialists.

[96]  S. Karlsson,et al.  Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures , 2011 .

[97]  A. Cordell,et al.  A prospective study of sternal wound complications. , 1984, The Annals of thoracic surgery.

[98]  Philipp Beerbaum,et al.  Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. , 2006, Biomaterials.

[99]  W S Pietrzak,et al.  Bioresorbable implants--practical considerations. , 1996, Bone.

[100]  Ross R. Muth,et al.  Biodegradable polymers for use in surgery—polyglycolic/poly(actic acid) homo- and copolymers: 1 , 1979 .

[101]  Ron Waksman,et al.  Short-term effects of biocorrodible iron stents in porcine coronary arteries. , 2008, Journal of interventional cardiology.

[102]  P Nieuwenhuis,et al.  Enzymatic activity toward poly(L-lactic acid) implants. , 1990, Journal of biomedical materials research.

[103]  D. Mantovani,et al.  Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies. , 2010, Acta biomaterialia.

[104]  N. Chegini,et al.  In vivo and in vitro degradation of monofilament absorbable sutures, PDS and Maxon. , 1990, Biomaterials.

[105]  E. Menzel,et al.  Two-dimensional elastic properties of human skin in terms of an incremental model at the in vivo configuration. , 1995, Medical engineering & physics.

[106]  H. Hermawan Biodegradable Metals: From Concept to Applications , 2012 .

[107]  Paul Kiekens,et al.  Biopolymers: overview of several properties and consequences on their applications. , 2002 .

[108]  J. Yue,et al.  In vivo study of degradable magnesium and magnesium alloy as bone implant , 2007 .

[109]  Andrea Meyer-Lindenberg,et al.  Degrading magnesium screws ZEK100: biomechanical testing, degradation analysis and soft-tissue biocompatibility in a rabbit model , 2013, Biomedical materials.

[110]  B. Wexler Pathophysiologic responses of spontaneously hypertensive rats to arterial magnesium--aluminum wire implants. , 1980, Atherosclerosis.

[111]  O. Böstman,et al.  Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. , 2000, Biomaterials.

[112]  A. Weiler,et al.  Foreign-body reaction and the course of osteolysis after polyglycolide implants for fracture fixation: experimental study in sheep. , 1996, The Journal of bone and joint surgery. British volume.

[113]  A. Göpferich,et al.  Mechanisms of polymer degradation and erosion. , 1996, Biomaterials.

[114]  G. Song,et al.  Advances in Mg corrosion and research suggestions , 2013 .

[115]  R. Edlich,et al.  Mechanical performance of monofilament synthetic absorbable sutures. , 1987, American journal of surgery.

[116]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[117]  Ming Li,et al.  Corrosion resistance and cytotoxicity of a MgF2 coating on biomedical Mg–1Ca alloy via vacuum evaporation deposition method , 2013 .

[118]  Y. Estrin,et al.  Bio-corrosion of a magnesium alloy with different processing histories , 2008 .

[119]  J A von Fraunhofer,et al.  Characterization of surgical suture materials using dynamic mechanical analysis. , 1992, Biomaterials.

[120]  L. Gottlieb,et al.  Mechanical comparison of 10 suture materials before and after in vivo incubation. , 1994, The Journal of surgical research.

[121]  R. M. Cohen,et al.  The balance of acid, base and charge in health and disease. , 1997, Kidney international.

[122]  Y. Ikada,et al.  Degradation of collagen suture in vitro and in vivo. , 1992, Biomaterials.

[123]  O. Böstman,et al.  Absorbable devices in the fixation of fractures. , 1996, The Journal of trauma.

[124]  Yufeng Zheng,et al.  Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. , 2011, Acta biomaterialia.

[125]  Anatoly V Perelmuter,et al.  Handbook of Mechanical Stability in Engineering: (In 3 Volumes)Vol. 1: General Theorems and Individual Members of Mechanical SystemsVol. 2: Stability of Elastically Deformable Mechanical SystemsVol. 3: More Challenges in Stability Theories and Codification Problems , 2013 .

[126]  M. Clynes,et al.  Multiple drug resistance in cancer 2 : molecular, cellular and clinical aspects , 1998 .

[127]  C. M. Agrawal,et al.  Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. , 1996, Biomaterials.

[128]  Geetha Manivasagam,et al.  Biomedical Implants: Corrosion and its Prevention - A Review~!2009-12-22~!2010-01-20~!2010-05-25~! , 2010 .

[129]  J. V. von Fraunhofer,et al.  Stress relaxation of organic suture materials. , 1990, Biomaterials.

[130]  R. E. Steele,et al.  The cosmetic outcome of the scar formation after cesarean section: percutaneous or intracutaneous suture? , 1994, Acta obstetricia et gynecologica Scandinavica.

[131]  J. V. Fraunhofer,et al.  Knot stability and tensile strength of an absorbable suture material , 1986 .

[132]  Karl-Heinrich Grote,et al.  Springer handbook of mechanical engineering , 2009 .

[133]  J. Seitz,et al.  Polymer–bioceramic composite coatings on magnesium for biomaterial applications , 2013 .

[134]  Kristiina Oksman,et al.  Mechanical Properties of Biodegradable Composites from Poly Lactic Acid (PLA) and Microcrystalline Cellulose (MCC) , 2005 .

[135]  P. Uggowitzer,et al.  Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. , 2012, Acta biomaterialia.

[136]  E. Topol,et al.  Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. , 1996, Circulation.

[137]  A. U. Daniels,et al.  Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. , 1990, Journal of applied biomaterials : an official journal of the Society for Biomaterials.

[138]  Jeremy Goldman,et al.  Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents , 2013, Advanced materials.

[139]  Jack G. Zhou,et al.  Structure and property studies of bioabsorbable poly(glycolide-co-lactide) fiber during processing and in vitro degradation , 2002 .

[140]  Harold Alexander,et al.  Biological response of intramedullary bone to poly‐L‐lactic acid , 1993 .

[141]  Friedrich-Wilhelm Bach,et al.  Histological and molecular evaluation of iron as degradable medical implant material in a murine animal model. , 2012, Journal of biomedical materials research. Part A.

[142]  T. Takada,et al.  Iron Compounds Formed by the Aerial Oxidation of Ferrous Salt Solutions , 1972 .

[143]  E. Aghion,et al.  In vivo behavior of biodegradable Mg–Nd–Y–Zr–Ca alloy , 2012, Journal of Materials Science: Materials in Medicine.

[144]  H. Haferkamp,et al.  In vivo corrosion of four magnesium alloys and the associated bone response. , 2005, Biomaterials.

[145]  Frank Witte,et al.  In vitro and in vivo corrosion measurements of magnesium alloys. , 2006, Biomaterials.

[146]  G. Bifulco,et al.  Comparative study on biocompatibility and absorption times of three absorbable monofilament suture materials (Polydioxanone, Poliglecaprone 25, Glycomer 631). , 2000, British journal of plastic surgery.

[147]  G. Perale,et al.  Drug eluting sutures: a model for in vivo estimations. , 2012, International journal of pharmaceutics.

[148]  H. W. Kerr,et al.  Grain structures and coupled growth in Zn-Ti alloys , 1976 .

[149]  Catherine G. Ambrose,et al.  Bioabsorbable Implants: Review of Clinical Experience in Orthopedic Surgery , 2004, Annals of Biomedical Engineering.

[150]  P. Fine,et al.  Sternal wire-induced persistent chest pain: a possible hypersensitivity reaction. , 1990, The Annals of thoracic surgery.

[151]  Thomas Hassel,et al.  Influence of a magnesium-fluoride coating of magnesium-based implants (MgCa0.8) on degradation in a rabbit model. , 2010, Journal of biomedical materials research. Part A.

[152]  Raimund Erbel,et al.  Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial , 2007, The Lancet.

[153]  M. G. Seelig A STUDY OF MAGNESIUM WIRE AS AN ABSORBABLE SUTURE AND LIGATURE MATERIAL , 1924 .

[154]  Yufeng Zheng,et al.  In vitro corrosion and biocompatibility of binary magnesium alloys. , 2009, Biomaterials.

[155]  B. Mordike,et al.  Magnesium: Properties — applications — potential , 2001 .

[156]  S. Fairweather-Tait,et al.  Oral ferrous sulfate supplements increase the free radical-generating capacity of feces from healthy volunteers. , 1999, The American journal of clinical nutrition.

[157]  E. Chung,et al.  Tensile strength of absorbable suture materials: in vitro analysis of the effects of pH and bacteria. , 2009, Journal of surgical education.

[158]  J. Kubásek,et al.  Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. , 2011, Acta biomaterialia.

[159]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[160]  A. Boccaccini,et al.  Mechanical properties of biodegradable polymer sutures coated with bioactive glass , 2002, Journal of materials science. Materials in medicine.

[161]  M. Peuster,et al.  Rare earth metals used in biodegradable magnesium-based stents do not interfere with proliferation of smooth muscle cells but do induce the upregulation of inflammatory genes. , 2009, Journal of biomedical materials research. Part A.

[162]  T. Barrows Degradable implant materials: A review of synthetic absorbable polymers and their applications , 1986 .

[163]  R. Langer,et al.  Designing materials for biology and medicine , 2004, Nature.

[164]  K. Heusler Fundamental aspects of the corrosion of alloys , 1997 .

[165]  V. Herbert Recommended dietary intakes (RDI) of iron in humans. , 1987, The American journal of clinical nutrition.

[166]  C. Shih,et al.  Potential risk of sternal wires. , 2004, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[167]  R. Edlich,et al.  Ease of continuous dermal suture removal. , 1990, The Journal of emergency medicine.