Non-dimensional analysis of PEM fuel cell phenomena by means of AC impedance measurements

Abstract AC impedance or electrochemical impedance spectroscopy (EIS) is becoming a fundamental technique used by researchers and scientists in proton exchange membrane (PEM) fuel cell analysis and development. In this work, in situ impedance measurements are presented for a series of operating conditions in a 50 cm 2 fuel cell. The electrode charge transfer resistance was determined from the corresponding arcs of the Nyquist diagrams. The analyses were performed for H 2 /O 2 and H 2 /air operation at different stoichiometric factors and reactant gases humidification. Characteristic time scales of charge transfer processes at the different operating conditions were estimated from the corresponding Bode plots. These values were used for a non-dimensional analysis of the different fuel cell electrochemical and transport processes, namely electrochemical reaction versus GDL reactant transport. Fuel cell adapted Damkholer numbers are thus presented, where the results indicate that the GDL diffusion transport is the limiting process for the cases under analysis, especially when air is used as oxidant. Additional analysis of channel convective mass transport versus GDL diffusive mass transport is also presented.

[1]  Fernando H. Garzon,et al.  Determination of Ionic and Electronic Resistivities in Carbon/Polyelectrolyte Fuel-Cell Composite Electrodes , 2002 .

[2]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[3]  Hubert A. Gasteiger,et al.  Effect of Relative Humidity on Oxygen Reduction Kinetics in a PEMFC , 2005 .

[4]  Don W. Green,et al.  Perry's Chemical Engineers' Handbook , 2007 .

[5]  A. Kornyshev,et al.  Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells , 1999 .

[6]  Jin Hyun Nam,et al.  Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium , 2003 .

[7]  N. Wagner,et al.  Change of electrochemical impedance spectra (EIS) with time during CO-poisoning of the Pt-anode in a membrane fuel cell , 2004 .

[8]  Hubert A. Gasteiger,et al.  Determination of Catalyst Unique Parameters for the Oxygen Reduction Reaction in a PEMFC , 2006 .

[9]  Jian Colin Sun,et al.  AC impedance technique in PEM fuel cell diagnosis—A review , 2007 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Brant A. Peppley,et al.  Modeling the Influence of GDL and flow-field plate parameters on the reaction distribution in the PEMFC cathode catalyst layer , 2005 .

[12]  K. R. Cooper,et al.  Electrical test methods for on-line fuel cell ohmic resistance measurement , 2006 .

[13]  P. Pickup,et al.  CHARACTERIZATION OF IONIC CONDUCTIVITY PROFILES WITHIN PROTON EXCHANGE MEMBRANE FUEL CELL GAS DIFFUSION ELECTRODES BY IMPEDANCE SPECTROSCOPY , 1999 .

[14]  Matthew M. Mench,et al.  Fuel Cell Engines , 2008 .

[15]  N. Wagner Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a.c. impedance spectroscopy , 2002 .

[16]  Wei-Mon Yan,et al.  Local transport phenomena and cell performance of PEM fuel cells with various serpentine flow field designs , 2008 .

[17]  Ned Djilali,et al.  Computational model of a PEM fuel cell with serpentine gas flow channels , 2004 .

[18]  T. Zawodzinski,et al.  The Effects of Processing Conditions and Chemical Composition on Electronic and Ionic Resistivities of Fuel Cell Electrode Composites , 2003 .

[19]  Edward L Cussler,et al.  Diffusion: Mass Transfer in Fluid Systems , 1984 .

[20]  Yann Bultel,et al.  Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion , 2001 .

[21]  Charles R. Martin,et al.  The Platinum Microelectrode/Nafion Interface: An Electrochemical Impedance Spectroscopic Analysis of Oxygen Reduction Kinetics and Nafion Characteristics , 1992 .

[22]  Christopher Hebling,et al.  Simultaneous electrochemical impedance spectroscopy of single cells in a PEM fuel cell stack , 2006 .

[23]  Hubert A. Gasteiger,et al.  Proton Conduction and Oxygen Reduction Kinetics in PEM Fuel Cell Cathodes: Effects of Ionomer-to-Carbon Ratio and Relative Humidity , 2009 .

[24]  L. Arriaga,et al.  Impedance spectroscopy as a tool in the evaluation of MEA's , 2003 .

[25]  H. Gasteiger,et al.  Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs , 2005 .

[26]  T. Springer,et al.  Characterization of polymer electrolyte fuel cells using ac impedance spectroscopy , 1996 .

[27]  Belkacem Ould-Bouamama,et al.  Model based PEM fuel cell state-of-health monitoring via ac impedance measurements , 2006 .

[28]  David A. Harrington,et al.  Characterisation of proton exchange membrane fuel cell (PEMFC) failures via electrochemical impedance spectroscopy , 2006 .

[29]  Christopher Hebling,et al.  Experimental and numerical studies of portable PEMFC stack , 2009 .

[30]  Chao-Yang Wang,et al.  Fundamental models for fuel cell engineering. , 2004, Chemical reviews.

[31]  James M. Fenton,et al.  Effect of Elevated Temperature and Reduced Relative Humidity on ORR Kinetics for PEM Fuel Cells , 2005 .

[32]  Alfredo Iranzo,et al.  Numerical model for the performance prediction of a PEM fuel cell. Model results and experimental va , 2010 .

[33]  Frano Barbir,et al.  PEM Fuel Cells: Theory and Practice , 2012 .

[34]  Chao-Yang Wang,et al.  Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells , 2000 .

[35]  J. Song,et al.  Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method , 2001 .

[36]  E. Gyenge Dimensionless numbers and correlating equations for the analysis of the membrane-gas diffusion electrode assembly in polymer electrolyte fuel cells , 2005 .

[37]  Jiujun Zhang,et al.  Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques , 2008 .

[38]  F. Rosa,et al.  Experimental fuel cell performance analysis under different operating conditions and bipolar plate designs , 2010 .