Semi-Supervised Learning with Graphs: Covariance Based Superpixels For Hyperspectral Image Classification

In this paper, we present a graph-based semi-supervised framework for hyperspectral image classification. We first introduce a novel superpixel algorithm based on the spectral covariance matrix representation of pixels to provide a better representation of our data. We then construct a superpixel graph, based on carefully considered feature vectors, before performing classification. We demonstrate, through a set of experimental results using two benchmarking datasets, that our approach outperforms three state-of-the-art classification frameworks, especially when a extremely small amount of labelled data is used.

[1]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[3]  Dino Ienco,et al.  Land Cover Classification via Multitemporal Spatial Data by Deep Recurrent Neural Networks , 2017, IEEE Geoscience and Remote Sensing Letters.

[4]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[5]  Fatih Murat Porikli,et al.  Region Covariance: A Fast Descriptor for Detection and Classification , 2006, ECCV.

[6]  Jon Atli Benediktsson,et al.  Classification of Hyperspectral Images by Exploiting Spectral–Spatial Information of Superpixel via Multiple Kernels , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[8]  Jon Atli Benediktsson,et al.  Feature Extraction of Hyperspectral Images With Image Fusion and Recursive Filtering , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Carola-Bibiane Schönlieb,et al.  Peekaboo-Where are the Objects? Structure Adjusting Superpixels , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[10]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Antonio J. Plaza,et al.  A New Spatial–Spectral Feature Extraction Method for Hyperspectral Images Using Local Covariance Matrix Representation , 2018, IEEE Transactions on Geoscience and Remote Sensing.