Collisional effects in the multiphoton dissociation of CF2CFCl

We report results of a combined experimental and theoretical study of the effects of collisions with an inert buffer gas, on the CO2 laser induced MPD of CF2CFCl to form CF2 and CFCl. Rates of formation of the primary product CF2 have been determined, in real time using the laser excited fluorescence technique, at four IR laser intensities (Imax = 35, 47, 73, 220 MW/cm2) and a range of argon buffer gas pressures (0⩽PAr⩽500 Torr). The experimental data clearly show the effects of collisional hole filling at low pressures and V–T collisional deactivation at higher (≳100 Torr) pressures. We present a generally applicable theoretical model for collisional effects in MPD, in which two parameters (1/τ, ΔE) specify the collisional deactivation, two parameters (s, <ω≳) specify the density of states of the absorber, two parameters (A∞,Eact) specify the microscopic reaction rates and one parameter (δ) specifies the radiative pumping rates. In applying this model to CF2CFCl five of these seven parameters are readily...

[1]  A. DeMaria,et al.  Laser handbook , 1981, IEEE Journal of Quantum Electronics.

[2]  S. Bialkowski,et al.  A quantitative test of unimolecular rate theory in the multiphoton dissociation of CF2CFCl , 1981 .

[3]  M. Goodman,et al.  Restricted quantum exchange theory for intramolecular vibrational relaxation in polyatomic molecules , 1980 .

[4]  A. Nitzan,et al.  Numerical simulations of molecular multiphoton excitation models , 1980 .

[5]  A. Nitzan,et al.  Random coupling models for intramolecular dynamics. II. Kinetic equations for collisionless multiphoton excitation of large molecules , 1980 .

[6]  S. Bialkowski,et al.  Energy partitioning in CO2 laser induced multiphoton dissociations: Energy of X̃/CF2 and X̃/CFCl from CF2CFCl , 1980 .

[7]  O. Judd A quantitative comparison of multiple‐photon absorption in polyatomic molecules , 1979 .

[8]  J. Steinfeld,et al.  Infrared double resonance of SF6 with a tunable diode laser , 1979 .

[9]  H. Bergh,et al.  Time resolved measurement of CF2 formation in the infrared multiphoton dissociation of CF2HCl , 1979 .

[10]  M. Goodman,et al.  A unified model for multiple photon dissociation of SF6 , 1979 .

[11]  M. Goodman,et al.  On the nature of laser-induced energy distributions in polyatomic molecules , 1979 .

[12]  J. Stephenson,et al.  Spectroscopy and photophysics of the CF2A~1B1-X~1A1 system , 1979 .

[13]  J. Stephenson,et al.  Laser intensity effects in the IR multiphoton decomposition of CF2HCl , 1979 .

[14]  M. Goodman,et al.  A re‐examination of the use of rate equations to account for fluence dependence, intramolecular relaxation, and unimolecular decay in laser driven polyatomic molecules. , 1979 .

[15]  J. Stephenson,et al.  Experiment and theory for CO2 laser‐induced CF2HCl decomposition rate dependence on pressure and intensity , 1979 .

[16]  R. Hall,et al.  Multiple IR photon laser induced reactions of cyclopropane , 1979 .

[17]  E. Yablonovitch,et al.  Collisionless multiphoton energy deposition and dissociation of SF 6 , 1979 .

[18]  P. A. Schulz,et al.  Simple bond rupture reactions in multiphoton dissociation of molecules , 1979 .

[19]  M. Quack On the determination of rate constants from the dependence of product yields upon laser energy fluence in unimolecular reactions induced by monochromatic ir radiation , 1979 .

[20]  S. Smith,et al.  Laser Induced Processes in Molecules , 1979 .

[21]  M. Goodman,et al.  Laser-induced rate processes in gases: Intermolecular and intramolecular relaxation in a polyatomic molecule , 1978 .

[22]  B. Rabinovitch,et al.  Do highly excited reactive polyatomic molecules behave ergodically. Technical report , 1978 .

[23]  J. Stephenson,et al.  Energy partitioning in the collision‐free multiphoton dissociation of molecules: Energy of ? CF2 from CF2HCl, CF2Br2, and CF2Cl2 , 1978 .

[24]  M. Quack Theory of unimolecular reactions induced by monochromatic infrared radiation , 1978 .

[25]  J. Bott Emission spectrum of the ν3 band of SF6 at 1780 °K , 1978 .

[26]  Eli Yablonovitch,et al.  Infrared‐laser‐induced unimolecular reactions , 1978 .

[27]  E. Yablonovitch,et al.  A statistical theory for collisionless multiphoton dissociation of SF6 , 1978 .

[28]  D. Setser,et al.  Vibrational energy transfer probabilities of highly vibrationally excited 1,1,1-trifluoroethane , 1978 .

[29]  V. Letokhov,et al.  Multiple photon excitation of polyatomic molecules from the many rotational states by an intense pulse of IR radiation , 1977 .

[30]  J. Lyman A model for unimolecular reaction of sulfur hexafluoride , 1977 .

[31]  B. Rabinovitch,et al.  Intermolecular vibrational energy transfer in thermal unimolecular systems , 1977 .

[32]  J. Halpern,et al.  Off resonant dissociation of NH3 to ground state fragments by pulsed CO2 laser radiation , 1976 .

[33]  M. Goodman,et al.  Laser‐induced rate processes in gases: Dynamics of polyatomic systems , 1976 .

[34]  V. Letokhov,et al.  Selective trans—Cis isomerization of the C2H2Cl2 molecule in an intense infrared laser field , 1976 .

[35]  J. Lyman,et al.  Enrichment of boron, carbon, and silicon isotopes by multiple‐photon absorption of 10.6‐μm laser radiation , 1976 .

[36]  J. Lyman,et al.  The temperature-dependent absorption spectrum of the v3 band of SF6 at 10·6 μm , 1975 .

[37]  C. Moore,et al.  Chemical and biochemical applications of lasers , 1974 .

[38]  M. Goodman,et al.  Laser‐induced rate processes in gases: Phase coherence in an N‐level model , 1973 .

[39]  W. Forst,et al.  Theory of Unimolecular Reactions , 1973 .

[40]  P. J. Robinson Unimolecular reactions , 1972 .

[41]  L. A. Woodward,et al.  Raman spectrum of trifluorochloroethylene , 1954 .

[42]  D. E. Mann,et al.  The Vibrational Spectrum of Chlorotrifluoroethylene , 1953 .