On Uniformly Recurrent Morphic Sequences
暂无分享,去创建一个
[1] Alexei L. Semenov,et al. Decidability of Monadic Theories , 1984, MFCS.
[2] Konrad Jacobs. Selecta Mathematica III , 1969 .
[3] Arnaud Maes. More on morphisms and almost-periodicity , 1998, Theor. Comput. Sci..
[4] G. Rozenberg,et al. Repetition of Subwords in DOL Languages , 1984, Inf. Control..
[5] Eitan M. Gurari,et al. Introduction to the theory of computation , 1989 .
[6] Alan Cobham,et al. Uniform tag sequences , 1972, Mathematical systems theory.
[7] J. Van Leeuwen,et al. Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .
[8] Yu. L. Pritykin. Finite-automaton transformations of strictly almost-periodic sequences , 2006 .
[9] M. Queffélec. Substitution dynamical systems, spectral analysis , 1987 .
[10] C. Mauduit,et al. Substitutions in dynamics, arithmetics, and combinatorics , 2002 .
[11] Symbolic dynamics , 2008, Scholarpedia.
[12] M. Lothaire,et al. Algebraic Combinatorics on Words: Index of Notation , 2002 .
[13] Yuri Pritykin. Almost periodicity, finite automata mappings, and related effectiveness issues , 2006, ArXiv.
[14] Yuri Pritykin. On Almost Periodicity Criteria for Morphic Sequences in Some Particular Cases , 2007, Developments in Language Theory.
[15] Rostislav Deviatov. On Subword Complexity of Morphic Sequences , 2008, CSR.
[16] Jean-Jacques Pansiot. Addendum to "A note on the closure of EOL languages under erasing homomorphismus". , 1985 .
[17] A. L. Semënov. LOGICAL THEORIES OF ONE-PLACE FUNCTIONS ON THE SET OF NATURAL NUMBERS , 1984 .
[18] Sébastien Ferenczi,et al. Complexity of sequences and dynamical systems , 1999, Discret. Math..
[19] J. Allouche. Algebraic Combinatorics on Words , 2005 .
[20] Jean-Jacques Pansiot. Subword complexities and iteration , 1985, Bull. EATCS.
[21] Tero Harju,et al. On the Periodicity of Morphisms on Free Monoids , 1986, RAIRO Theor. Informatics Appl..
[22] Alfred J. van der Poorten,et al. Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..
[23] Jeffrey Shallit,et al. Automatic Sequences by Jean-Paul Allouche , 2003 .
[24] Tero Harju,et al. Combinatorics on Words , 2004 .
[25] Tero Harju,et al. The ω sequence problem for DOL systems is decidable , 1984, JACM.
[26] Jean-Jacques Pansiot,et al. Decidability of Periodicity for Infinite Words , 1986, RAIRO Theor. Informatics Appl..
[27] Wolfgang Thomas,et al. Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[28] Christian Grillenberger,et al. Constructions of strictly ergodic systems , 1973 .
[29] François Nicolas,et al. Quelques propriétés des mots substitutifs , 2003 .
[30] Paul C. Shields,et al. Construction of strictly ergodic systems , 1973 .
[31] Jean-Jacques Pansiot,et al. Complexité des Facteurs des Mots Infinis Engendrés par Morphimes Itérés , 1984, ICALP.
[32] M. Lothaire,et al. Combinatorics on words: Frontmatter , 1997 .
[33] Olivier Carton,et al. The Monadic Theory of Morphic Infinite Words and Generalizations , 2000, Inf. Comput..
[34] Jean-Paul Allouche,et al. Sur la complexite des suites in nies , 1994 .
[35] A L Semenov. ON CERTAIN EXTENSIONS OF THE ARITHMETIC OF ADDITION OF NATURAL NUMBERS , 1980 .
[36] Andrej Muchnik,et al. Almost periodic sequences , 2003, Theor. Comput. Sci..
[37] F. Michel Dekking,et al. Iteration of maps by an automaton , 1994, Discret. Math..
[38] J. Shallit,et al. Automatic Sequences: Contents , 2003 .
[39] K. Jacobs,et al. Maschinenerzeugte 0-1-Folgen , 1969 .
[40] Karel Culik,et al. The Sequence Equivalence Problem for D0L Systems is Decidable , 1977, ICALP.