On Uniformly Recurrent Morphic Sequences

A pure morphic sequence is a right-infinite, symbolic sequence obtained by iterating a letter-to-word substitution. For instance, the Fibonacci sequence and the Thue–Morse sequence, which play an important role in theoretical computer science, are pure morphic. Define a coding as a letter-to-letter substitution. The image of a pure morphic sequence under a coding is called a morphic sequence. A sequence x is called uniformly recurrent if for each finite subword u of x there exists an integer l such that u occurs in every l-length subword of x. The paper mainly focuses on the problem of deciding whether a given morphic sequence is uniformly recurrent. Although the status of the problem remains open, we show some evidence for its decidability: in particular, we prove that it can be solved in polynomial time on pure morphic sequences and on automatic sequences. In addition, we prove that the complexity of every uniformly recurrent, morphic sequence has at most linear growth: here, complexity is understood as the function that maps each positive integer n to the number of distinct n-length subwords occurring in the sequence.

[1]  Alexei L. Semenov,et al.  Decidability of Monadic Theories , 1984, MFCS.

[2]  Konrad Jacobs Selecta Mathematica III , 1969 .

[3]  Arnaud Maes More on morphisms and almost-periodicity , 1998, Theor. Comput. Sci..

[4]  G. Rozenberg,et al.  Repetition of Subwords in DOL Languages , 1984, Inf. Control..

[5]  Eitan M. Gurari,et al.  Introduction to the theory of computation , 1989 .

[6]  Alan Cobham,et al.  Uniform tag sequences , 1972, Mathematical systems theory.

[7]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[8]  Yu. L. Pritykin Finite-automaton transformations of strictly almost-periodic sequences , 2006 .

[9]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[10]  C. Mauduit,et al.  Substitutions in dynamics, arithmetics, and combinatorics , 2002 .

[11]  Symbolic dynamics , 2008, Scholarpedia.

[12]  M. Lothaire,et al.  Algebraic Combinatorics on Words: Index of Notation , 2002 .

[13]  Yuri Pritykin Almost periodicity, finite automata mappings, and related effectiveness issues , 2006, ArXiv.

[14]  Yuri Pritykin On Almost Periodicity Criteria for Morphic Sequences in Some Particular Cases , 2007, Developments in Language Theory.

[15]  Rostislav Deviatov On Subword Complexity of Morphic Sequences , 2008, CSR.

[16]  Jean-Jacques Pansiot Addendum to "A note on the closure of EOL languages under erasing homomorphismus". , 1985 .

[17]  A. L. Semënov LOGICAL THEORIES OF ONE-PLACE FUNCTIONS ON THE SET OF NATURAL NUMBERS , 1984 .

[18]  Sébastien Ferenczi,et al.  Complexity of sequences and dynamical systems , 1999, Discret. Math..

[19]  J. Allouche Algebraic Combinatorics on Words , 2005 .

[20]  Jean-Jacques Pansiot Subword complexities and iteration , 1985, Bull. EATCS.

[21]  Tero Harju,et al.  On the Periodicity of Morphisms on Free Monoids , 1986, RAIRO Theor. Informatics Appl..

[22]  Alfred J. van der Poorten,et al.  Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..

[23]  Jeffrey Shallit,et al.  Automatic Sequences by Jean-Paul Allouche , 2003 .

[24]  Tero Harju,et al.  Combinatorics on Words , 2004 .

[25]  Tero Harju,et al.  The ω sequence problem for DOL systems is decidable , 1984, JACM.

[26]  Jean-Jacques Pansiot,et al.  Decidability of Periodicity for Infinite Words , 1986, RAIRO Theor. Informatics Appl..

[27]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[28]  Christian Grillenberger,et al.  Constructions of strictly ergodic systems , 1973 .

[29]  François Nicolas,et al.  Quelques propriétés des mots substitutifs , 2003 .

[30]  Paul C. Shields,et al.  Construction of strictly ergodic systems , 1973 .

[31]  Jean-Jacques Pansiot,et al.  Complexité des Facteurs des Mots Infinis Engendrés par Morphimes Itérés , 1984, ICALP.

[32]  M. Lothaire,et al.  Combinatorics on words: Frontmatter , 1997 .

[33]  Olivier Carton,et al.  The Monadic Theory of Morphic Infinite Words and Generalizations , 2000, Inf. Comput..

[34]  Jean-Paul Allouche,et al.  Sur la complexite des suites in nies , 1994 .

[35]  A L Semenov ON CERTAIN EXTENSIONS OF THE ARITHMETIC OF ADDITION OF NATURAL NUMBERS , 1980 .

[36]  Andrej Muchnik,et al.  Almost periodic sequences , 2003, Theor. Comput. Sci..

[37]  F. Michel Dekking,et al.  Iteration of maps by an automaton , 1994, Discret. Math..

[38]  J. Shallit,et al.  Automatic Sequences: Contents , 2003 .

[39]  K. Jacobs,et al.  Maschinenerzeugte 0-1-Folgen , 1969 .

[40]  Karel Culik,et al.  The Sequence Equivalence Problem for D0L Systems is Decidable , 1977, ICALP.