Single spins in semiconductor quantum dot microcavities

Semiconductor quantum dots can be utilized to capture single electron or hole spins and they have therewith promise for various applications in fields like spintronics, spin based quantum information processing and chiral photonics. We integrate quantum dots into semiconductor microcavities to enhance light-matter interaction for ultrafast optical manipulation and read-out. Single electron and single hole spins can be statistically or deterministically loaded into the quantum dots and coherently controlled. Within the about μs-coherence times of the spins about 105 complete single qubit rotations can be performed with ultrafast optical pulses. By utilizing a Λ-type energy level system of a single quantum-dot electron spin in a magnetic field and ultrafast non-linear frequency conversion, quantum-dot spin-photon entanglement is observed.

[1]  A. Shields Semiconductor quantum light sources , 2007, 0704.0403.

[2]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[3]  L. A. Coldren,et al.  Picosecond Coherent Optical Manipulation of a Single Electron Spin in a Quantum Dot , 2008, Science.

[4]  Christian Schneider,et al.  Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength , 2012, Nature.

[5]  M. S. Skolnick,et al.  Coherent optical control of the spin of a single hole in an InAs/GaAs quantum dot. , 2011, Physical review letters.

[6]  Christian Schneider,et al.  Ultrafast optical spin echo in a single quantum dot , 2010 .

[7]  Shiro Tsukamoto,et al.  Photoluminescence studies of GaAs quantum dots grown by droplet epitaxy , 2001 .

[8]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[9]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[10]  Christian Schneider,et al.  Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit , 2011, 1106.5676.

[11]  A. Shabaev,et al.  Mode Locking of Electron Spin Coherences in Singly Charged Quantum Dots , 2006, Science.

[12]  E. Togan,et al.  Quantum teleportation from a propagating photon to a solid-state spin qubit , 2013, Nature Communications.

[13]  K. Karrai,et al.  Optical emission from a charge-tunable quantum ring , 2000, Nature.

[14]  Axel Lorke,et al.  Epitaxially Self-Assembled Quantum Dots , 2001 .

[15]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[16]  Christian Schneider,et al.  Complete tomography of a high-fidelity solid-state entangled spin–photon qubit pair , 2013, Nature Communications.

[17]  Kristiaan De Greve,et al.  Towards Solid-State Quantum Repeaters , 2013 .

[18]  Thaddeus D. Ladd,et al.  Complete quantum control of a single quantum dot spin using ultrafast optical pulses , 2008, Nature.

[19]  Allan S. Bracker,et al.  Optical control of one and two hole spins in interacting quantum dots , 2011 .

[20]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[21]  E. Togan,et al.  Observation of entanglement between a quantum dot spin and a single photon , 2012, Nature.

[22]  Aleksander Tartakovskii,et al.  Quantum dots : optics, electron transport and future applications , 2012 .