Adaptive RLS algorithms under stochastic excitation-L/sup 2/ convergence analysis

A very general class of RLS (recursive least squares) algorithms having a forgetting factor is considered. The basic assumptions are that the data generation mechanism is free of disturbances and that the observation vector is a stochastic process satisfying a phi -mixing condition. A stochastic characterization of persistent excitation is first given. Then, it is proved that the algorithm is exponentially convergent in the mean-square sense. >

[1]  J. Mendel,et al.  Discrete Techniques of Parameter Estimation: The Equation Error Formulation , 1973 .

[2]  Lennart Ljung,et al.  Analysis of recursive stochastic algorithms , 1977 .

[3]  Alan Weiss,et al.  Digital adaptive filters: Conditions for convergence, rates of convergence, effects of noise and errors arising from the implementation , 1979, IEEE Trans. Inf. Theory.

[4]  B. Anderson,et al.  Lyapunov techniques for the exponential stability of linear difference equations with random coefficients , 1980 .

[5]  B. Anderson,et al.  Performance of adaptive estimation algorithms in dependent random environments , 1980 .

[6]  David Q. Mayne,et al.  Deterministic convergence of a self-tuning regulator with variable forgetting factor , 1981 .

[7]  T. R. Fortescue,et al.  Implementation of self-tuning regulators with variable forgetting factors , 1981, Autom..

[8]  Brian D. O. Anderson,et al.  Exponential convergence of recursive least squares with exponential forgetting factor , 1982 .

[9]  E. Eweda,et al.  Second-order convergence analysis of stochastic adaptive linear filtering , 1983 .

[10]  Tore Hägglund,et al.  The problem of forgetting old data in recursive estimation , 1983 .

[11]  Robert R. Bitmead,et al.  Persistence of excitation conditions and the convergence of adaptive schemes , 1984, IEEE Trans. Inf. Theory.

[12]  Miroslav Kárný,et al.  Tracking of Slowly Varying Parameters by Directional Forgetting , 1984 .

[13]  Lennart Ljung Analysis of stochastic gradient algorithms for linear regression problems , 1984, IEEE Trans. Inf. Theory.

[14]  Bernard Widrow,et al.  On the statistical efficiency of the LMS algorithm with nonstationary inputs , 1984, IEEE Trans. Inf. Theory.

[15]  Eweda Eweda,et al.  Tracking error bounds of adaptive nonstationary filtering , 1985, Autom..

[16]  Bernard Widrow,et al.  Adaptive Signal Processing , 1985 .

[17]  T. Hägglund Recursive Estimation of Slowly Time-Varying Parameters , 1985 .

[18]  R. Kulhavý Restricted exponential forgetting in real-time identification , 1985, at - Automatisierungstechnik.

[19]  Rudolf Kulhavy,et al.  Restricted exponential forgetting in real-time identification , 1985, Autom..

[20]  Eweda Eweda,et al.  Convergence of the RLS and LMS adaptive filters , 1987 .

[21]  C. R. Johnson,et al.  Lectures on adaptive parameter estimation , 1988 .

[22]  Paolo Bolzern,et al.  A counter example to the exponential convergence of the directional forgetting algorithm , 1990 .

[23]  Paolo Bolzern,et al.  Convergence and exponential convergence of identification algorithms with directional forgetting factor , 1990, Autom..