Room temperature molten salts composed of the 1-ethyl-3-methylimidazolium cation and a chloroaluminate anion have received much attention for use in a variety of commercial applications such as batteries, photovoltaics, metal deposition, and capacitors. The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF{sub 4}) was demonstrated as a versatile electrolyte by examining three representative electrochemical couples: ferrocene and tetrathiafulvalene oxidations and lithium ion reduction. Square-wave voltammetric data for ferrocene oxidation were fit to a reversible one-electron process using the COOL algorithm to give a half-wave potential of 0.490 V vs. Al/Al(III) and a diffusion coefficient of 5.1 {times} 10{sup {minus}7} cm{sup 2}/s. The two-electron oxidation of tetrathiafulvalene was reversible and proceeded through two consecutive one-electron steps; although data collected at lower square-wave frequencies indicated a slow precipitation of the TTF{sup +} species. Lithium ion was reduced to lithium metal at a Pt electrode following the addition of water to the EMIBF{sub 4} electrolyte, whereas lithium ion reduction at an Al wire produced the {beta}-LiAl alloy. Conductivities and kinematic viscosities of EMIBF{sub 4} were measured from 20 to 100 C and had values of 14 mS/cm and 0.275 cm{sup 2}/s, respectively, at 25 C.