Algebraic and Analytic Aspects of Soliton Type Equations

This is a review of two of the fundamental tools for analysis of soliton equations: i) the algebraic ones based on Kac-Moody algebras, their central extensions and their dual algebras which underlie the Hamiltonian structures of the NLEE; ii) the construction of the fundamental analytic solutions of the Lax operator and the Riemann-Hilbert problem (RHP) which they satisfy. The fact that the inverse scattering problem for the Lax operator can be viewed as a RHP gave rise to the dressing Zakharov-Shabat, one of the most effective ones for constructing soliton solutions. These two methods when combined may allow one to prove rigorously the results obtained by the abstract algebraic methods. They also allow to derive spectral decompositions for non-self-adjoint Lax operators.

[1]  Yoshimi Saito,et al.  Eigenfunction Expansions Associated with Second-order Differential Equations for Hilbert Space-valued Functions , 1971 .

[2]  V. Gerdjikov Complete integrability, gauge equivalence and Lax representation of inhomogeneous nonlinear evolution equations , 1992 .

[3]  G. Weiss,et al.  EIGENFUNCTION EXPANSIONS. Associated with Second-order Differential Equations. Part I. , 1962 .

[4]  David J. Kaup,et al.  Evolution equations, singular dispersion relations, and moving eigenvalues , 1979 .

[5]  Boris Konopelchenko,et al.  Solitons in Multidimensions: Inverse Spectral Transform Method , 1993 .

[6]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[7]  P. Caudrey,et al.  The inverse problem for the third order equation uxxx + q(x)ux + r(x)u = −iζ3u , 1980 .

[8]  R. L. Anderson,et al.  On the use of isospectral eigenvalue problems for obtaining hereditary symmetries for Hamiltonian systems , 1982 .

[9]  V. Zakharov,et al.  On the integrability of classical spinor models in two-dimensional space-time , 1980 .

[10]  S. Griffis EDITOR , 1997, Journal of Navigation.

[11]  Vladimir E. Zakharov,et al.  Resonant interaction of wave packets in nonlinear media , 1973 .

[12]  V. Gerdjikov,et al.  Gauge covariant formulation of the generating operator. 2. Systems on homogeneous spaces , 1985 .

[13]  I. M. Glazman,et al.  Theory of linear operators in Hilbert space , 1961 .

[14]  D. H. Sattinger,et al.  On the complete integrability of completely integrable systems , 1991, math/9712253.

[15]  Classical Yang- Baxter Equation and Low Dimensional Triangular Lie Bialgebras Over Arbitary Field , 1998, math/0311517.

[16]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[17]  Vladimir S. Gerdjikov,et al.  The generating operator for the n × n linear system , 1981 .

[18]  Alexey Borisovich Shabat,et al.  Inverse-scattering problem for a system of differential equations , 1975 .

[19]  Vladimir E. Zakharov,et al.  A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I , 1974 .

[20]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[21]  I. Stewart,et al.  Infinite-dimensional Lie algebras , 1974 .

[22]  M. A. Semenov-Tyan-Shanskii Classical r-matrices and the method of orbits , 1985 .

[23]  V. V. Sokolov,et al.  Lie algebras and equations of Korteweg-de Vries type , 1985 .

[24]  T. Ratiu,et al.  Kac-moody lie algebras and soliton equations. III. Stationary equations associated with A1(1) , 1983 .

[25]  Ronald R. Coifman,et al.  Inverse scattering and evolution equations , 1985 .

[26]  A. Fokas,et al.  The direct linearizing transform and the Benjamin-Ono equation , 1983 .

[27]  P. Kulish Quantum difference nonlinear Schrödinger equation , 1981 .

[28]  V. Gerdjikov,et al.  Expansions over the 'squared' solutions and the inhomogeneous nonlinear Schrodinger equation , 1992 .

[29]  F. Smithies Linear Operators , 2019, Nature.

[30]  V. Gerdjikov On the spectral theory of the integro-differential operator a generating nonlinear evolution equations , 1982 .

[31]  D. J. Kaup,et al.  The Three-Wave Interaction-A Nondispersive Phenomenon , 1976 .

[32]  T. Ratiu,et al.  Kac-moody lie algebras and soliton equations: II. Lax equations associated with A1(1) , 1983 .

[33]  Joel H. Ferziger,et al.  Systems of singular integral equations , 1967 .

[34]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[35]  V. Gerdjikov,et al.  N-wave interactions related to simple Lie algebras. ℤ2-reductions and soliton solutions , 2000, nlin/0009034.

[36]  G. Segal,et al.  Loop groups and equations of KdV type , 1985 .

[37]  V. Zakharov,et al.  Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II , 1979 .

[38]  D. Kaup,et al.  Closure of the squared Zakharov--Shabat eigenstates , 1976 .

[39]  Vladimir E. Zakharov,et al.  Multidimensional nonlinear integrable systems and methods for constructing their solutions , 1985 .

[40]  Leon A. Takhtajan,et al.  Hamiltonian methods in the theory of solitons , 1987 .

[41]  A. Fordy,et al.  Nonlinear Evolution Equations: Integrability and Spectral Methods , 1991 .

[42]  F. D. Gakhov RIEMANN BOUNDARY VALUE PROBLEM , 1966 .

[43]  Vladimir S. Gerdjikov,et al.  Generalised Fourier transforms for the soliton equations. Gauge-covariant formulation , 1986 .

[44]  V. Zakharov,et al.  Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method , 1978 .

[45]  Ronald R. Coifman,et al.  Scattering and inverse scattering for first order systems , 1984 .

[46]  Mark Adler,et al.  On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-devries type equations , 1978 .

[47]  V. Gerdjikov,et al.  Completeness of the eigenfunctions for the Caudrey–Beals–Coifman system , 1994 .

[48]  L. Dickey Soliton Equations and Hamiltonian Systems , 2003 .

[49]  S. Manakov Example of a completely integrable nonlinear wave field with nontrivial dynamics (lee model) , 1976 .

[50]  V. Gerdjikov,et al.  Gauge covariant formulation of the generating operator. 1. The Zakharov-Shabat system , 1984 .

[51]  V. Kac,et al.  Bombay Lectures On Highest Weight Representations Of Infinite Dimensional Lie Algebras , 1983 .

[52]  M. Jimbo,et al.  Solitons and Infinite Dimensional Lie Algebras , 1983 .

[53]  P. Caudrey The inverse problem for a general N × N spectral equation , 1982 .