Stochastically Transitive Models for Pairwise Comparisons: Statistical and Computational Issues
暂无分享,去创建一个
Martin J. Wainwright | Nihar B. Shah | Sivaraman Balakrishnan | Adityanand Guntuboyina | Adityanand Guntuboyina | M. Wainwright | Sivaraman Balakrishnan
[1] E. Gilbert. A comparison of signalling alphabets , 1952 .
[2] Noga Alon,et al. Ranking Tournaments , 2006, SIAM J. Discret. Math..
[3] R. Rosenfeld,et al. Decisions , 1955, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.
[4] T. Von. ALGEBRAIC CONNECTIVITY OF ERDÖS-RÉNYI GRAPHS NEAR THE CONNECTIVITY THRESHOLD , 2014 .
[5] Manuela Cattelan,et al. Models for Paired Comparison Data: A Review with Emphasis on Dependent Data , 2012, 1210.1016.
[6] R. Duncan Luce,et al. Individual Choice Behavior: A Theoretical Analysis , 1979 .
[7] R. A. Bradley,et al. RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS , 1952 .
[8] Joseph S. Verducci,et al. Probability Models and Statistical Analyses for Ranking Data , 1992 .
[9] Arun Rajkumar,et al. A Statistical Convergence Perspective of Algorithms for Rank Aggregation from Pairwise Data , 2014, ICML.
[10] L. Thurstone. A law of comparative judgment. , 1994 .
[11] Mark Braverman,et al. Noisy sorting without resampling , 2007, SODA '08.
[12] Venkatesh Saligrama,et al. A Topic Modeling Approach to Ranking , 2015, AISTATS.
[13] David L. Donoho,et al. The Optimal Hard Threshold for Singular Values is 4/sqrt(3) , 2013, 1305.5870.
[14] Nir Ailon,et al. Aggregating inconsistent information: Ranking and clustering , 2008 .
[15] J WainwrightMartin,et al. Stochastically Transitive Models for Pairwise Comparisons , 2017 .
[16] Nebojsa Jojic,et al. Efficient Ranking from Pairwise Comparisons , 2013, ICML.
[17] J. Marschak,et al. Experimental Tests of Stochastic Decision Theory , 1957 .
[18] Paul-Marie Samson,et al. Concentration of measure inequalities for Markov chains and $\Phi$-mixing processes , 2000 .
[19] R. Oliveira. Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges , 2009, 0911.0600.
[20] Martin J. Wainwright,et al. Feeling the bern: Adaptive estimators for Bernoulli probabilities of pairwise comparisons , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).
[21] S. Chatterjee,et al. Matrix estimation by Universal Singular Value Thresholding , 2012, 1212.1247.
[22] Bruce E. Hajek,et al. Minimax-optimal Inference from Partial Rankings , 2014, NIPS.
[23] J. Cima,et al. On weak* convergence in ¹ , 1996 .
[24] P. Fishburn. Binary choice probabilities: on the varieties of stochastic transitivity , 1973 .
[25] E. Rio,et al. Concentration around the mean for maxima of empirical processes , 2005, math/0506594.
[26] R. Luce,et al. Stochastic transitivity and cancellation of preferences between bitter-sweet solutions , 1965 .
[27] Martin J. Wainwright,et al. Simple, Robust and Optimal Ranking from Pairwise Comparisons , 2015, J. Mach. Learn. Res..
[28] J. Wellner,et al. Entropy estimate for high-dimensional monotonic functions , 2005, math/0512641.
[29] A. Culyer. Thurstone’s Law of Comparative Judgment , 2014 .
[30] P. Diaconis. A Generalization of Spectral Analysis with Application to Ranked Data , 1989 .
[31] A. Tversky. Elimination by aspects: A theory of choice. , 1972 .
[32] R. Luce,et al. Individual Choice Behavior: A Theoretical Analysis. , 1960 .
[33] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[34] Claire Mathieu,et al. Electronic Colloquium on Computational Complexity, Report No. 144 (2006) How to rank with few errors A PTAS for Weighted Feedback Arc Set on Tournaments , 2006 .
[35] Fan Chung Graham,et al. On the Spectra of General Random Graphs , 2011, Electron. J. Comb..
[36] R. Graham,et al. Spearman's Footrule as a Measure of Disarray , 1977 .
[37] R. A. Bradley,et al. RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .
[38] T. Tao. Topics in Random Matrix Theory , 2012 .
[39] Adityanand Guntuboyina,et al. On matrix estimation under monotonicity constraints , 2015, 1506.03430.
[40] Martin J. Wainwright,et al. Estimation from Pairwise Comparisons: Sharp Minimax Bounds with Topology Dependence , 2015, J. Mach. Learn. Res..
[41] R. C. Thompson. The behavior of eigenvalues and singular values under perturbations of restricted rank , 1976 .
[42] Yuxin Chen,et al. Spectral MLE: Top-K Rank Aggregation from Pairwise Comparisons , 2015, ICML.
[43] Willem H. Haemers,et al. Spectra of Graphs , 2011 .
[44] M. Ledoux. The concentration of measure phenomenon , 2001 .
[45] J. Marden. Analyzing and Modeling Rank Data , 1996 .
[46] D. Donoho,et al. The Optimal Hard Threshold for Singular Values is 4 / √ 3 , 2013 .
[47] N. Wilcox,et al. Decisions, Error and Heterogeneity , 1997 .
[48] Devavrat Shah,et al. Iterative ranking from pair-wise comparisons , 2012, NIPS.
[49] Devavrat Shah,et al. A Nonparametric Approach to Modeling Choice with Limited Data , 2009, Manag. Sci..