Stochastically Transitive Models for Pairwise Comparisons: Statistical and Computational Issues

There are various parametric models for analyzing pairwise comparison data, including the Bradley–Terry–Luce (BTL) and Thurstone models, but their reliance on strong parametric assumptions is limiting. In this paper, we study a flexible model for pairwise comparisons, under which the probabilities of outcomes are required only to satisfy a natural form of stochastic transitivity. This class includes parametric models, including the BTL and Thurstone models as special cases, but is considerably more general. We provide various examples of models in this broader stochastically transitive class for which classical parametric models provide poor fits. Despite this greater flexibility, we show that the matrix of probabilities can be estimated at the same rate as in standard parametric models up to logarithmic terms. On the other hand, unlike in the BTL and Thurstone models, computing the minimax-optimal estimator in the stochastically transitive model is non-trivial, and we explore various computationally tractable alternatives. We show that a simple singular value thresholding algorithm is statistically consistent but does not achieve the minimax rate. We then propose and study algorithms that achieve the minimax rate over interesting sub-classes of the full stochastically transitive class. We complement our theoretical results with thorough numerical simulations.

[1]  E. Gilbert A comparison of signalling alphabets , 1952 .

[2]  Noga Alon,et al.  Ranking Tournaments , 2006, SIAM J. Discret. Math..

[3]  R. Rosenfeld,et al.  Decisions , 1955, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[4]  T. Von ALGEBRAIC CONNECTIVITY OF ERDÖS-RÉNYI GRAPHS NEAR THE CONNECTIVITY THRESHOLD , 2014 .

[5]  Manuela Cattelan,et al.  Models for Paired Comparison Data: A Review with Emphasis on Dependent Data , 2012, 1210.1016.

[6]  R. Duncan Luce,et al.  Individual Choice Behavior: A Theoretical Analysis , 1979 .

[7]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS , 1952 .

[8]  Joseph S. Verducci,et al.  Probability Models and Statistical Analyses for Ranking Data , 1992 .

[9]  Arun Rajkumar,et al.  A Statistical Convergence Perspective of Algorithms for Rank Aggregation from Pairwise Data , 2014, ICML.

[10]  L. Thurstone A law of comparative judgment. , 1994 .

[11]  Mark Braverman,et al.  Noisy sorting without resampling , 2007, SODA '08.

[12]  Venkatesh Saligrama,et al.  A Topic Modeling Approach to Ranking , 2015, AISTATS.

[13]  David L. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4/sqrt(3) , 2013, 1305.5870.

[14]  Nir Ailon,et al.  Aggregating inconsistent information: Ranking and clustering , 2008 .

[15]  J WainwrightMartin,et al.  Stochastically Transitive Models for Pairwise Comparisons , 2017 .

[16]  Nebojsa Jojic,et al.  Efficient Ranking from Pairwise Comparisons , 2013, ICML.

[17]  J. Marschak,et al.  Experimental Tests of Stochastic Decision Theory , 1957 .

[18]  Paul-Marie Samson,et al.  Concentration of measure inequalities for Markov chains and $\Phi$-mixing processes , 2000 .

[19]  R. Oliveira Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges , 2009, 0911.0600.

[20]  Martin J. Wainwright,et al.  Feeling the bern: Adaptive estimators for Bernoulli probabilities of pairwise comparisons , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[21]  S. Chatterjee,et al.  Matrix estimation by Universal Singular Value Thresholding , 2012, 1212.1247.

[22]  Bruce E. Hajek,et al.  Minimax-optimal Inference from Partial Rankings , 2014, NIPS.

[23]  J. Cima,et al.  On weak* convergence in ¹ , 1996 .

[24]  P. Fishburn Binary choice probabilities: on the varieties of stochastic transitivity , 1973 .

[25]  E. Rio,et al.  Concentration around the mean for maxima of empirical processes , 2005, math/0506594.

[26]  R. Luce,et al.  Stochastic transitivity and cancellation of preferences between bitter-sweet solutions , 1965 .

[27]  Martin J. Wainwright,et al.  Simple, Robust and Optimal Ranking from Pairwise Comparisons , 2015, J. Mach. Learn. Res..

[28]  J. Wellner,et al.  Entropy estimate for high-dimensional monotonic functions , 2005, math/0512641.

[29]  A. Culyer Thurstone’s Law of Comparative Judgment , 2014 .

[30]  P. Diaconis A Generalization of Spectral Analysis with Application to Ranked Data , 1989 .

[31]  A. Tversky Elimination by aspects: A theory of choice. , 1972 .

[32]  R. Luce,et al.  Individual Choice Behavior: A Theoretical Analysis. , 1960 .

[33]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[34]  Claire Mathieu,et al.  Electronic Colloquium on Computational Complexity, Report No. 144 (2006) How to rank with few errors A PTAS for Weighted Feedback Arc Set on Tournaments , 2006 .

[35]  Fan Chung Graham,et al.  On the Spectra of General Random Graphs , 2011, Electron. J. Comb..

[36]  R. Graham,et al.  Spearman's Footrule as a Measure of Disarray , 1977 .

[37]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[38]  T. Tao Topics in Random Matrix Theory , 2012 .

[39]  Adityanand Guntuboyina,et al.  On matrix estimation under monotonicity constraints , 2015, 1506.03430.

[40]  Martin J. Wainwright,et al.  Estimation from Pairwise Comparisons: Sharp Minimax Bounds with Topology Dependence , 2015, J. Mach. Learn. Res..

[41]  R. C. Thompson The behavior of eigenvalues and singular values under perturbations of restricted rank , 1976 .

[42]  Yuxin Chen,et al.  Spectral MLE: Top-K Rank Aggregation from Pairwise Comparisons , 2015, ICML.

[43]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[44]  M. Ledoux The concentration of measure phenomenon , 2001 .

[45]  J. Marden Analyzing and Modeling Rank Data , 1996 .

[46]  D. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4 / √ 3 , 2013 .

[47]  N. Wilcox,et al.  Decisions, Error and Heterogeneity , 1997 .

[48]  Devavrat Shah,et al.  Iterative ranking from pair-wise comparisons , 2012, NIPS.

[49]  Devavrat Shah,et al.  A Nonparametric Approach to Modeling Choice with Limited Data , 2009, Manag. Sci..