Oracle-Assisted Static Diffie-Hellman Is Easier Than Discrete Logarithms
暂无分享,去创建一个
Antoine Joux | David Naccache | Emmanuel Thomé | Reynald Lercier | A. Joux | D. Naccache | R. Lercier | Emmanuel Thomé
[1] Arjen K. Lenstra,et al. The number field sieve , 1990, STOC '90.
[2] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, IEEE Trans. Inf. Theory.
[3] T. Elgamal. A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, CRYPTO 1984.
[4] Carl Pomerance,et al. The Development of the Number Field Sieve , 1994 .
[5] David Chaum,et al. Undeniable Signatures , 1989, CRYPTO.
[6] Douglas H. Wiedemann. Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.
[7] Antoine Joux,et al. The Function Field Sieve in the Medium Prime Case , 2006, EUROCRYPT.
[8] K. Dickman. On the frequency of numbers containing prime factors of a certain relative magnitude , 1930 .
[9] Philippe Flajolet,et al. An Analytic Approach to Smooth Polynominals over Finite Fields , 1998, ANTS.
[10] Frederik Vercauteren,et al. The Number Field Sieve in the Medium Prime Case , 2006, CRYPTO.
[11] Oliver Schirokauer. Discrete logarithms and local units , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[12] Antoine Joux,et al. When e-th Roots Become Easier Than Factoring , 2007, ASIACRYPT.
[13] Antoine Joux,et al. Improvements to the general number field sieve for discrete logarithms in prime fields. A comparison with the gaussian integer method , 2003, Math. Comput..
[14] Daniel R. L. Brown,et al. The Static Diffie-Hellman Problem , 2004, IACR Cryptology ePrint Archive.
[15] Burton S. Kaliski,et al. Server-assisted generation of a strong secret from a password , 2000, Proceedings IEEE 9th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE 2000).
[16] Oliver Schirokauer. Virtual logarithms , 2005, J. Algorithms.
[17] Alfred Menezes,et al. Another look at non-standard discrete log and Diffie-Hellman problems , 2008, J. Math. Cryptol..