Progressive delamination analysis of composite materials using XFEM and a discrete damage zone model

The modeling of progressive delamination by means of a discrete damage zone model within the extended finite element method is investigated. This framework allows for both bulk and interface damages to be conveniently traced, regardless of the underlying mesh alignment. For discrete interfaces, a new mixed-mode force–separation relation, which accounts for the coupled interaction between opening and sliding modes, is proposed. The model is based on the concept of Continuum Damage Mechanics and is shown to be thermodynamically consistent. An integral-type nonlocal damage is adopted in the bulk to regularize the softening material response. The resulting nonlinear equations are solved using a Newton scheme with a dissipation-based arc-length constraint, for which an analytical Jacobian is derived. Several benchmark delamination studies, as well as failure analyses of a fiber/epoxy unit cell, are presented and discussed in detail. The proposed model is validated against available analytical/experimental data and is found to be robust and mesh insensitive.

[1]  P. Camanho,et al.  Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials , 2003 .

[2]  M. Shanahan,et al.  Instrumented end notched flexure – Crack propagation and process zone monitoring Part II: Data reduction and experimental , 2013 .

[3]  J. Reeder,et al.  An Evaluation of Mixed-Mode Delamination Failure Criteria , 1992 .

[4]  Glaucio H. Paulino,et al.  A unified potential-based cohesive model of mixed-mode fracture , 2009 .

[5]  Glaucio H. Paulino,et al.  A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material , 2006 .

[6]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .

[7]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[8]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[9]  M. Crisfield,et al.  Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues , 2001 .

[10]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[11]  A. Turón,et al.  An exact solution for the determination of the mode mixture in the mixed-mode bending delamination test , 2006 .

[12]  J. C. Simo,et al.  An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids , 1993 .

[13]  S. Eckardt,et al.  Modelling of cohesive crack growth in concrete structures with the extended finite element method , 2007 .

[14]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[15]  Michael R Wisnom,et al.  A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens , 2007 .

[16]  Somnath Ghosh,et al.  Extended Voronoi cell finite element model for multiple cohesive crack propagation in brittle materials , 2006 .

[17]  de R René Borst,et al.  On the numerical integration of interface elements , 1993 .

[18]  Larsgunnar Nilsson,et al.  Modeling of delamination using a discretized cohesive zone and damage formulation , 2002 .

[19]  Gilles Pijaudier-Cabot,et al.  CONTINUUM DAMAGE THEORY - APPLICATION TO CONCRETE , 1989 .

[20]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[21]  M. A. Crisfield,et al.  Progressive Delamination Using Interface Elements , 1998 .

[22]  N. Chandra,et al.  Some issues in the application of cohesive zone models for metal–ceramic interfaces , 2002 .

[23]  Haim Waisman,et al.  Discrete damage zone model for fracture initiation and propagation , 2012 .

[24]  Pedro P. Camanho,et al.  Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness , 2010 .

[25]  G. Paulino,et al.  Cohesive fracture model for functionally graded fiber reinforced concrete , 2010 .

[26]  L. Asp The effects of moisture and temperature on the interlaminar delamination toughness of a carbon/epoxy composite , 1998 .

[27]  De Xie,et al.  Discrete cohesive zone model for mixed-mode fracture using finite element analysis , 2006 .

[28]  J. Mazars A description of micro- and macroscale damage of concrete structures , 1986 .

[29]  S. Dwivedi,et al.  Modeling impact induced delamination of woven fiber reinforced composites with contact/cohesive laws , 2000 .

[30]  Pedro P. Camanho,et al.  A damage model for the simulation of delamination in advanced composites under variable-mode loading , 2006 .

[31]  T. Fries A corrected XFEM approximation without problems in blending elements , 2008 .

[32]  Michael R Wisnom,et al.  A combined stress-based and fracture-mechanics-based model for predicting delamination in composites , 1993 .

[33]  Garth N. Wells,et al.  Cohesive‐zone models, higher‐order continuum theories and reliability methods for computational failure analysis , 2004 .

[34]  G. Meschke,et al.  Energy-based modeling of cohesive and cohesionless cracks via X-FEM , 2007 .

[35]  T. Rabczuk,et al.  A Meshfree Method based on the Local Partition of Unity for Cohesive Cracks , 2007 .

[36]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[37]  G. Alfano On the influence of the shape of the interface law on the application of cohesive-zone models , 2006 .

[38]  Giulio Alfano,et al.  Solution strategies for the delamination analysis based on a combination of local‐control arc‐length and line searches , 2003 .

[39]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[40]  D. Borst,et al.  Fundamental issues in finite element analyses of localization of deformation , 1993 .

[41]  B. Karihaloo,et al.  Incremental‐secant modulus iteration scheme and stress recovery for simulating cracking process in quasi‐brittle materials using XFEM , 2007 .

[42]  J. Hutchinson,et al.  The influence of plasticity on mixed mode interface toughness , 1993 .

[43]  T. Belytschko,et al.  New crack‐tip elements for XFEM and applications to cohesive cracks , 2003 .

[44]  J. Mosler,et al.  A thermodynamically and variationally consistent class of damage-type cohesive models , 2011 .

[45]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[46]  Qingda Yang,et al.  Cohesive models for damage evolution in laminated composites , 2005 .

[47]  Z. Bažant,et al.  Nonlocal Continuum Damage, Localization Instability and Convergence , 1988 .

[48]  Marc Duflot,et al.  Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..

[49]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[50]  R. Borst Numerical aspects of cohesive-zone models , 2003 .

[51]  E. M. Wu,et al.  CRACK EXTENSION IN FIBERGLASS REINFORCED PLASTICS , 1965 .

[52]  G. Paulino,et al.  Cohesive Zone Models: A Critical Review of Traction-Separation Relationships Across Fracture Surfaces , 2011 .

[53]  Xiaopeng Xu,et al.  Numerical simulations of dynamic interfacial crack growth allowing for crack growth away from the bond line , 1996 .

[54]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[55]  Pedro P. Camanho,et al.  An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models , 2007 .

[56]  Guillaume Parry,et al.  Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure. Part I: Theoretical analysis , 2014 .

[57]  Cv Clemens Verhoosel,et al.  A dissipation‐based arc‐length method for robust simulation of brittle and ductile failure , 2009 .

[58]  van den Mj Marco Bosch,et al.  An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion , 2006 .

[59]  T. Rabczuk Computational Methods for Fracture in Brittle and Quasi-Brittle Solids: State-of-the-Art Review and Future Perspectives , 2013 .

[60]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[61]  Glaucio H. Paulino,et al.  Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials , 2005 .

[62]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[63]  John H. Crews,et al.  The mixed-mode bending method for delamination testing , 1989 .

[64]  De Xie,et al.  Discrete Cohesive Zone Model to Simulate Static Fracture in 2D Triaxially Braided Carbon Fiber Composites , 2006 .

[65]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[66]  H. Nguyen-Xuan,et al.  A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures , 2008 .

[67]  Milan Jirásek,et al.  Consistent tangent stiffness for nonlocal damage models , 2002 .

[68]  R. Gracie,et al.  Cohesive and non‐cohesive fracture by higher‐order enrichment of XFEM , 2012 .

[69]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[70]  Jr. J. Crews,et al.  Mixed-Mode Bending Method for Delamination Testing , 1990 .

[71]  Stephen R Hallett,et al.  Cohesive zone length in numerical simulations of composite delamination , 2008 .