A Fast Randomized Eigensolver with Structured LDL Factorization Update

In this paper, we propose a structured bisection method with adaptive randomized sampling for finding selected or all of the eigenvalues of certain real symmetric matrices $A$. For $A$ with a low-rank property, we construct a hierarchically semiseparable (HSS) approximation and show how to quickly evaluate and update its inertia in the bisection method. Unlike some existing randomized HSS constructions, the methods here do not require the knowledge of the off-diagonal (numerical) ranks in advance. Moreover, for $A$ with a weak rank property or slowly decaying off-diagonal singular values, we show an idea for aggressive low-rank inertia evaluation, which means that a compact HSS approximation can preserve the inertia for certain shifts. This is analytically justified for a special case, and numerically shown for more general ones. A generalized LDL factorization of the HSS approximation is then designed for the fast evaluation of the inertia. A significant advantage over standard LDL factorizations is that...

[1]  Wolfgang Mackens,et al.  Computing the Minimum Eigenvalue of a Symmetric Positive Definite Toeplitz Matrix by Newton-type Methods , 1999, SIAM J. Sci. Comput..

[2]  Jianlin Xia,et al.  Efficient Structured Multifrontal Factorization for General Large Sparse Matrices , 2013, SIAM J. Sci. Comput..

[3]  Shivkumar Chandrasekaran,et al.  A Superfast Algorithm for Toeplitz Systems of Linear Equations , 2007, SIAM J. Matrix Anal. Appl..

[4]  Ming Gu,et al.  Stable and Efficient Algorithms for Structured Systems of Linear Equations , 1998, SIAM J. Matrix Anal. Appl..

[5]  V. Pan On computations with dense structured matrices , 1990 .

[6]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[7]  V. Rokhlin,et al.  A fast randomized algorithm for the approximation of matrices ✩ , 2007 .

[8]  Per-Gunnar Martinsson,et al.  A Fast Randomized Algorithm for Computing a Hierarchically Semiseparable Representation of a Matrix , 2011, SIAM J. Matrix Anal. Appl..

[9]  Jianlin Xia,et al.  Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..

[10]  Stanley C. Eisenstat,et al.  A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..

[11]  J. Bunch,et al.  Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .

[12]  Victor Y. Pan,et al.  Fast and stable QR eigenvalue algorithms for generalized companion matrices and secular equations , 2005, Numerische Mathematik.

[13]  Paul Van Dooren,et al.  Implicit double shift QR-algorithm for companion matrices , 2010, Numerische Mathematik.

[14]  Jianlin Xia,et al.  A Fast QR Algorithm for Companion Matrices , 2007 .

[15]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[16]  W. Hackbusch,et al.  Introduction to Hierarchical Matrices with Applications , 2003 .

[17]  Victor Y. Pan,et al.  Transformations of Matrix Structures Work Again , 2013, 1303.0353.

[18]  Alle-Jan van der Veen,et al.  Some Fast Algorithms for Sequentially Semiseparable Representations , 2005, SIAM J. Matrix Anal. Appl..

[19]  Shivkumar Chandrasekaran,et al.  A divide-and-conquer algorithm for the eigendecomposition of symmetric block-diagonal plus semiseparable matrices , 2004, Numerische Mathematik.

[20]  Jianlin Xia,et al.  On the Complexity of Some Hierarchical Structured Matrix Algorithms , 2012, SIAM J. Matrix Anal. Appl..

[21]  V. Rokhlin,et al.  A randomized algorithm for the approximation of matrices , 2006 .

[22]  V. Rokhlin,et al.  A fast algorithm for the inversion of general Toeplitz matrices , 2004 .

[23]  I. Gohberg,et al.  The QR iteration method for Hermitian quasiseparable matrices of an arbitrary order , 2005 .

[24]  Shivkumar Chandrasekaran,et al.  A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..

[25]  F. Trench,et al.  Numerical solution of the eigenvalue problem for Hermitian Toeplitz matrices , 1989 .

[26]  Jianlin Xia,et al.  Superfast and Stable Structured Solvers for Toeplitz Least Squares via Randomized Sampling , 2014, SIAM J. Matrix Anal. Appl..

[27]  Lexing Ying,et al.  Fast construction of hierarchical matrix representation from matrix-vector multiplication , 2009, J. Comput. Phys..

[28]  Gene H. Golub,et al.  Matrix computations , 1983 .

[29]  Thomas Kailath,et al.  Fast Gaussian elimination with partial pivoting for matrices with displacement structure , 1995 .

[30]  Jianlin Xia,et al.  Massively parallel structured multifrontal solver for time-harmonic elastic waves in 3-D anisotropic media , 2012 .

[31]  Georg Heinig,et al.  Inversion of generalized Cauchy matrices and other classes of structured matrices , 1995 .

[32]  J. Sylvester XIX. A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares , 1852 .

[33]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[34]  Peter Benner,et al.  Computing All or Some Eigenvalues of Symmetric H-Matrices , 2012, SIAM J. Sci. Comput..

[35]  M. Morf,et al.  Displacement ranks of matrices and linear equations , 1979 .

[36]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[37]  Jianlin Xia,et al.  A Superfast Structured Solver for Toeplitz Linear Systems via Randomized Sampling , 2012, SIAM J. Matrix Anal. Appl..

[38]  Jianlin Xia,et al.  Robust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices , 2010, SIAM J. Matrix Anal. Appl..

[39]  Ming Gu,et al.  New Fast Algorithms for Structured Linear Least Squares Problems , 1998, SIAM J. Matrix Anal. Appl..