Error detection on quantum computers improving the accuracy of chemical calculations

Author(s): Urbanek, M; Nachman, B; De Jong, WA | Abstract: © 2020 American Physical Society. A major milestone of quantum error correction is to achieve the fault-tolerance threshold beyond which quantum computers can be made arbitrarily accurate. This requires extraordinary resources and engineering efforts. We show that, even without achieving full fault tolerance, quantum error detection is already useful on the current generation of quantum hardware. We demonstrate this experimentally by executing an end-to-end chemical calculation for the hydrogen molecule encoded in the [[4, 2, 2]] quantum error-detecting code. The encoded calculation with logical qubits significantly improves the accuracy of the molecular ground-state energy.

[1]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[2]  E. Wigner,et al.  About the Pauli exclusion principle , 1928 .

[3]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[4]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[5]  Rodney J. Bartlett,et al.  Alternative coupled-cluster ansätze II. The unitary coupled-cluster method , 1989 .

[6]  G. D'Agostini,et al.  A Multidimensional unfolding method based on Bayes' theorem , 1995 .

[7]  Vaidman,et al.  Error prevention scheme with four particles. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[8]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[9]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[10]  Andrew G. Taube,et al.  New perspectives on unitary coupled‐cluster theory , 2006 .

[11]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[12]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[13]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[14]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[15]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[16]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[17]  R. Blatt,et al.  Quantum computations on a topologically encoded qubit , 2014, Science.

[18]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[19]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[20]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[21]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[22]  Daniel Gottesman,et al.  Quantum fault tolerance in small experiments , 2016, 1610.03507.

[23]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[24]  M. Yung,et al.  Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure , 2015, 1506.00443.

[25]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[26]  J. Carter,et al.  Hybrid Quantum-Classical Hierarchy for Mitigation of Decoherence and Determination of Excited States , 2016, 1603.05681.

[27]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[28]  James R. Wootton,et al.  Repetition code of 15 qubits , 2017, 1709.00990.

[29]  Andrew W. Cross,et al.  Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits. , 2017, Physical review letters.

[30]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[31]  Caroline Figgatt,et al.  Fault-tolerant quantum error detection , 2016, Science Advances.

[32]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[33]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[34]  J. Gambetta,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2018, Nature.

[35]  H. De Raedt,et al.  Testing quantum fault tolerance on small systems , 2018, Physical Review A.

[36]  R. Pooser,et al.  Cloud Quantum Computing of an Atomic Nucleus. , 2018, Physical Review Letters.

[37]  Rui Chao,et al.  Fault-tolerant quantum computation with few qubits , 2017, npj Quantum Information.

[38]  Jonathan Carter,et al.  Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm , 2018 .

[39]  T. O'Brien,et al.  Low-cost error mitigation by symmetry verification , 2018, Physical Review A.

[40]  Stephen Gray,et al.  Accounting for errors in quantum algorithms via individual error reduction , 2018, npj Quantum Information.

[41]  S. Benjamin,et al.  Practical Quantum Error Mitigation for Near-Future Applications , 2017, Physical Review X.

[42]  Rui Chao,et al.  Quantum Error Correction with Only Two Extra Qubits. , 2017, Physical review letters.

[43]  V. Kendon,et al.  Protecting quantum memories using coherent parity check codes , 2017, Quantum Science and Technology.

[44]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[45]  M. A. Rol,et al.  Experimental error mitigation via symmetry verification in a variational quantum eigensolver , 2019, Physical Review A.

[46]  Simon Benjamin,et al.  Error-Mitigated Digital Quantum Simulation. , 2018, Physical review letters.

[47]  Kristan Temme,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[48]  P. Zoller,et al.  Self-verifying variational quantum simulation of lattice models , 2018, Nature.

[49]  Ivano Tavernelli,et al.  Gate-Efficient Simulation of Molecular Eigenstates on a Quantum Computer , 2018, Physical Review Applied.

[50]  Robin Harper,et al.  Fault-Tolerant Logical Gates in the IBM Quantum Experience. , 2018, Physical review letters.

[51]  M. Girvin,et al.  Quantum Simulation of Gauge Theories and Inflation , 2019, Journal Club for Condensed Matter Physics.

[52]  Ying Li,et al.  Mitigating algorithmic errors in a Hamiltonian simulation , 2018, Physical Review A.

[53]  George Siopsis,et al.  Scalar quantum field theories as a benchmark for near-term quantum computers , 2018, Physical Review A.

[54]  S. Gray,et al.  Recovering noise-free quantum observables , 2018, Physical Review A.

[55]  Ryan Babbush,et al.  Decoding quantum errors with subspace expansions , 2019, Nature Communications.

[56]  B. Nachman,et al.  Unfolding quantum computer readout noise , 2019, npj Quantum Information.