Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization

A procedure for generating non-differentiable, continuously differentiable, and twice continuously differentiable classes of test functions for multiextremal multidimensional box-constrained global optimization is presented. Each test class consists of 100 functions. Test functions are generated by defining a convex quadratic function systematically distorted by polynomials in order to introduce local minima. To determine a class, the user defines the following parameters: (i) problem dimension, (ii) number of local minima, (iii) value of the global minimum, (iv) radius of the attraction region of the global minimizer, (v) distance from the global minimizer to the vertex of the quadratic function. Then, all other necessary parameters are generated randomly for all 100 functions of the class. Full information about each test function including locations and values of all local minima is supplied to the user. Partial derivatives are also generated where possible.

[1]  Panos M. Pardalos Generation of large-scale quadratic programs for use as global optimization test problems , 1987, TOMS.

[2]  Panos M. Pardalos,et al.  A Collection of Test Problems for Constrained Global Optimization Algorithms , 1990, Lecture Notes in Computer Science.

[3]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[4]  Mahyar A. Amouzegar,et al.  Test problem construction for linear bilevel programming problems , 1996, J. Glob. Optim..

[5]  Donald E. Knuth The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .

[6]  Marco Gaviano,et al.  Test Functions with Variable Attraction Regions for Global Optimization Problems , 1998, J. Glob. Optim..

[7]  Panos M. Pardalos,et al.  A test problem generator for the Steiner problem in graphs , 1993, TOMS.

[8]  H. Zimmermann Towards global optimization 2: L.C.W. DIXON and G.P. SZEGÖ (eds.) North-Holland, Amsterdam, 1978, viii + 364 pages, US $ 44.50, Dfl. 100,-. , 1979 .

[9]  J. B. Rosen,et al.  Construction of large-scale global minimum concave quadratic test problems , 1986 .

[10]  Panos M. Pardalos,et al.  Generating quadratic assignment test problems with known optimal permutations , 1992, Comput. Optim. Appl..

[11]  M. Avriel Construction of Test Problems for a Class of Reverse Convex Programs , .

[12]  János D. Pintér,et al.  Global Optimization: Software, Test Problems, and Applications , 2002 .

[13]  J. Ben Rosen,et al.  Global minimum test problem construction , 1982, Math. Program..

[14]  Marco Locatelli,et al.  A Note on the Griewank Test Function , 2003, J. Glob. Optim..

[15]  Fabio Schoen,et al.  A wide class of test functions for global optimization , 1993, J. Glob. Optim..

[16]  Panos M. Pardalos,et al.  Construction of test problems in quadratic bivalent programming , 1991, TOMS.

[17]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[18]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[19]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[20]  Klaus Schittkowski,et al.  Nonlinear programming codes , 1980 .

[21]  Francisco Facchinei,et al.  Generating box-constrained optimization problems , 1997, TOMS.