Algebraic geometry of Bayesian networks

We study the algebraic varieties defined by the conditional independence statements of Bayesian networks. A complete algebraic classification is given for Bayesian networks on at most five random variables. Hidden variables are related to the geometry of higher secant varieties.

[1]  Kazuhiro Yokoyama,et al.  Localization and Primary Decomposition of Polynomial Ideals , 1996, J. Symb. Comput..

[2]  Joe W. Harris,et al.  Algebraic Geometry: A First Course , 1995 .

[3]  L. A. Goodman Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Tomas Kocka,et al.  Dimension Correction for Hierarchical Latent Class Models , 2002, UAI.

[6]  Raffaella Settimi,et al.  Geometry, moments and conditional independence trees with hidden variables , 2000 .

[7]  Jim Q. Smith,et al.  On the Geometry of Bayesian Graphical Models with Hidden Variables , 1998, UAI.

[8]  Michael Stillman,et al.  Macaulay 2: A system for computation in algebraic geometry and commutative algebra , 1996 .

[9]  Dan Geiger,et al.  Automated Analytic Asymptotic Evaluation of the Marginal Likelihood for Latent Models , 2002, UAI.

[10]  D. Geiger,et al.  Stratified exponential families: Graphical models and model selection , 2001 .

[11]  H. Wynn,et al.  Algebraic Statistics: Computational Commutative Algebra in Statistics , 2000 .

[12]  D. Haughton On the Choice of a Model to Fit Data from an Exponential Family , 1988 .

[13]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[14]  Abdul Salam Jarrah,et al.  Classification of Finite Dynamical Systems , 2001, ArXiv.

[15]  Michael L. Catalano-Johnson The homogeneous ideals of higher secant varieties , 2001 .

[16]  J. M. Landsberg,et al.  On the Ideals of Secant Varieties of Segre Varieties , 2004, Found. Comput. Math..

[17]  Gerhard Pfister,et al.  Primary Decomposition: Algorithms and Comparisons , 1997, Algorithmic Algebra and Number Theory.

[18]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[19]  Michael I. Jordan Graphical Models , 2003 .

[20]  Frantisek Matús,et al.  Conditional Independences among Four Random Variables II , 1995, Combinatorics, Probability and Computing.

[21]  Dinesh Manocha,et al.  SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .

[22]  A. Geramita,et al.  Ranks of tensors, secant varieties of Segre varieties and fat points , 2002 .

[23]  Dan Geiger,et al.  Asymptotic Model Selection for Naive Bayesian Networks , 2002, J. Mach. Learn. Res..

[24]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[25]  B. Sturmfels,et al.  Binomial Ideals , 1994, alg-geom/9401001.

[26]  V. Strassen Rank and optimal computation of generic tensors , 1983 .

[27]  F. Mattt,et al.  Conditional Independences among Four Random Variables Iii: Final Conclusion , 1999 .

[28]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[29]  Luis David Garcia,et al.  Algebraic Statistics in Model Selection , 2004, UAI.

[30]  František Matúš,et al.  Conditional Independences among Four Random Variables III: Final Conclusion , 1999, Combinatorics, probability & computing.

[31]  D. Geiger,et al.  On the toric algebra of graphical models , 2006, math/0608054.

[32]  Dan Geiger,et al.  Graphical Models and Exponential Families , 1998, UAI.