Anomalous diffusion of field lines and charged particles in Arnold-Beltrami-Childress force-free magnetic fields

The cosmic magnetic fields in regions of low plasma pressure and large currents, such as in interstellar space and gaseous nebulae, are force-free in the sense that the Lorentz force vanishes. The three-dimensional Arnold-Beltrami-Childress (ABC) field is an example of a force-free, helical magnetic field. In fluid dynamics, ABC flows are steady state solutions of the Euler equation. The ABC magnetic field lines exhibit a complex and varied structure that is a mix of regular and chaotic trajectories in phase space. The characteristic features of field line trajectories are illustrated through the phase space distribution of finite-distance and asymptotic-distance Lyapunov exponents. In regions of chaotic trajectories, an ensemble-averaged variance of the distance between field lines reveals anomalous diffusion—in fact, superdiffusion—of the field lines. The motion of charged particles in the force-free ABC magnetic fields is different from the flow of passive scalars in ABC flows. The particles do not nec...

[1]  J. R. Jokipii COSMIC-RAY PROPAGATION. II. DIFFUSION IN THE INTERPLANETARY MAGNETIC FIELD. , 1967 .

[2]  Colin Tudge,et al.  Planet , 1999 .

[3]  M. Tuckerman Statistical Mechanics: Theory and Molecular Simulation , 2010 .

[4]  I. Mezić Lectures on Mixing and Dynamical Systems , 2009 .

[5]  K. Subramanian,et al.  SCALE DEPENDENCE OF MAGNETIC HELICITY IN THE SOLAR WIND , 2011, 1101.1709.

[6]  T. Sakurai,et al.  Solar Force-free Magnetic Fields , 2012, 1208.4693.

[7]  Uriel Frisch,et al.  A numerical investigation of magnetic field generation in a flow with chaotic streamlines , 1984 .

[8]  Ricardo L. Viana,et al.  Field line diffusion and loss in a tokamak with an ergodic magnetic limiter , 2001 .

[9]  A. Ram,et al.  Kinetic theory for distribution functions of wave-particle interactions in plasmas. , 2010, Physical review letters.

[10]  Eugene N. Parker,et al.  THE PASSAGE OF ENERGETIC CHARGED PARTICLES THROUGH INTERPLANETARY SPACE , 1965 .

[11]  V. Arnold Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .

[12]  P. G. Drazin,et al.  Philip Drazin and Norman Riley: The Navier–Stokes equations : a classification of flows and exact solutions , 2011, Theoretical and Computational Fluid Dynamics.

[13]  J. Cary,et al.  Noncanonical Hamiltonian mechanics and its application to magnetic field line flow , 1983 .

[14]  A. Lichtenberg,et al.  Regular and Chaotic Dynamics , 1992 .

[15]  M. Rosenbluth,et al.  Electron heat transport in a tokamak with destroyed magnetic surfaces , 1978 .

[16]  A. Ram,et al.  Dynamics of charged particles in spatially chaotic magnetic fields , 2010 .

[17]  S. Chandrasekhar,et al.  ON FORCE-FREE MAGNETIC FIELDS. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Rosenbluth,et al.  MHD stability of Spheromak , 1979 .

[19]  J. B. Taylor,et al.  Relaxation of toroidal plasma and generation of reverse magnetic fields , 1974 .

[20]  H. K. Moffatt Structure and stability of solutions of the Euler equations: a lagrangian approach , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[21]  Bengt Fornberg,et al.  Magnetic Field Confinement in the Solar Corona. I. Force-free Magnetic Fields , 2004 .

[22]  Marcel Lesieur,et al.  New trends in turbulence , 2001 .

[23]  K. Subramanian,et al.  Astrophysical magnetic field and nonlinear dynamo theory , 2004, astro-ph/0405052.

[24]  Uriel Frisch,et al.  Dynamo action in a family of flows with chaotic streamlines , 1986 .

[25]  Michael Ghil,et al.  Turbulence and predictability in geophysical fluid dynamics and climate dynamics , 1985 .

[26]  O. Piro,et al.  Passive scalars, three-dimensional volume-preserving maps, and chaos , 1988 .

[27]  Markus J. Aschwanden,et al.  Physics of the Solar Corona: An Introduction with Problems and Solutions , 2005 .

[28]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[29]  Y. Moon,et al.  Force-Freeness of Solar Magnetic Fields in the Photosphere , 2001 .

[30]  George E. P. Box,et al.  Time Series Analysis: Box/Time Series Analysis , 2008 .

[31]  M. Saxton Single-particle tracking: the distribution of diffusion coefficients. , 1997, Biophysical journal.

[32]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[33]  W. Marsden I and J , 2012 .

[34]  M. Shlesinger,et al.  Above, below and beyond Brownian motion , 1999 .

[35]  Francis F. Chen,et al.  Introduction to Plasma Physics and Controlled Fusion , 2015 .

[36]  L. Woltjer,et al.  A THEOREM ON FORCE-FREE MAGNETIC FIELDS. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[37]  G. Laval Particle diffusion in stochastic magnetic fields , 1993 .

[38]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[39]  Uriel Frisch,et al.  Chaotic streamlines in the ABC flows , 1986, Journal of Fluid Mechanics.

[40]  A. Beresnyak ASYMMETRIC DIFFUSION OF MAGNETIC FIELD LINES , 2013, 1303.3269.

[41]  I. Palmer Transport coefficients of low‐energy cosmic rays in interplanetary space , 1982 .

[42]  J. R. Jokipii The rate of separation of magnetic lines of force in a random magnetic field. , 1973 .

[43]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .