Cisplatin-induced nephrotoxicity causes altered renal hemodynamics in Wistar Kyoto and spontaneously hypertensive rats: role of augmented renal alpha-adrenergic responsiveness.

[1]  T. A. Najjar,et al.  Effects of mycophenolate mofetil on cisplatin-induced renal dysfunction in rats , 2007, Cancer Chemotherapy and Pharmacology.

[2]  Y. Itoh,et al.  Protective effect of cyclic AMP against cisplatin-induced nephrotoxicity. , 2006, Free radical biology & medicine.

[3]  T. Nakao,et al.  Relationship of intracellular calcium and oxygen radicals to Cisplatin-related renal cell injury. , 2006, Journal of pharmacological sciences.

[4]  K. Minneman,et al.  Recent progress in α1-adrenergic receptor research , 2005, Acta Pharmacologica Sinica.

[5]  Y. Ijiri,et al.  Protective effects of capsaicin against cisplatin-induced nephrotoxicity in rats. , 2005, Biological & pharmaceutical bulletin.

[6]  Xiao‐xing Yin,et al.  Protective effects of bendazac lysine on early experimental diabetic nephropathy in rats , 2005, Acta Pharmacologica Sinica.

[7]  J. Phillips Neural, Hormonal and Renal Interactions in Long-Term Blood Pressure Control PATHOGENESIS OF HYPERTENSION IN RENAL FAILURE: ROLE OF THE SYMPATHETIC NERVOUS SYSTEM AND RENAL AFFERENTS , 2005 .

[8]  H. Girouard,et al.  Acute and chronic effects of free radicals on α1-adrenergic-induced vasoconstriction in mesenteric beds of spontaneously hypertensive rats , 2005 .

[9]  N. Lameire The pathophysiology of acute renal failure. , 2005, Critical care clinics.

[10]  Wafaa A. Ahmed,et al.  Naringenin attenuates cisplatin nephrotoxicity in rats. , 2005, Life sciences.

[11]  S. Kellie,et al.  SEVERE NEUROTOXICITY, OTOTOXICITY AND NEPHROTOXICITY FOLLOWING HIGH-DOSE CISPLATIN AND AMIFOSTINE , 2005, Pediatric hematology and oncology.

[12]  R. Kontermann Recombinant bispecific antibodies for cancer therapy , 2005, Acta Pharmacologica Sinica.

[13]  V. Campese,et al.  Reactive oxygen species stimulate central and peripheral sympathetic nervous system activity. , 2004, American journal of physiology. Heart and circulatory physiology.

[14]  N. Abdullah,et al.  The contribution of adrenoceptor subtype(s) in the renal vasculature of diabetic spontaneously hypertensive rats , 2004, British journal of pharmacology.

[15]  Pieter Evenepoel,et al.  Acute toxic renal failure. , 2004, Best practice & research. Clinical anaesthesiology.

[16]  J. Zacharia,et al.  α1‐Adrenoceptor subtypes involved in vasoconstrictor responses to exogenous and neurally released noradrenaline in rat femoral resistance arteries , 2004, British journal of pharmacology.

[17]  Y. Mun,et al.  Butein ameliorates renal concentrating ability in cisplatin-induced acute renal failure in rats. , 2004, Biological & pharmaceutical bulletin.

[18]  O. Inagaki,et al.  Preventive effect of zelandopam, a dopamine D1 receptor agonist, on cisplatin-induced acute renal failure in rats. , 2003, European journal of pharmacology.

[19]  S. Saad,et al.  Protection Effects of Taurine Supplementation against Cisplatin-Induced Nephrotoxicity in Rats , 2002, Chemotherapy.

[20]  R. Villalobos-Molina,et al.  Evidence for the use of agonists to characterize alpha 1-adrenoceptors in isolated arteries of the rat. , 2002, Proceedings of the Western Pharmacology Society.

[21]  C. Hillier,et al.  The α1A-adrenoceptor subtype mediates contraction in rat femoral resistance arteries , 2001 .

[22]  D. Moura,et al.  Vascular adrenoceptors: an update. , 2001, Pharmacological reviews.

[23]  C. Bagnis,et al.  Erythropoietin enhances recovery after cisplatin-induced acute renal failure in the rat. , 2001, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[24]  L. Rump The Role of Sympathetic Nervous Activity in Chronic Renal Failure , 2001 .

[25]  P. Kintzel Anticancer Drug—Induced Kidney Disorders , 2001, Drug safety.

[26]  T. A. Najjar,et al.  The effect of rebamipide on cisplatin-induced nephrotoxicity in rats. , 2000, Pharmacological research.

[27]  A. Hishida,et al.  The role of oxygen free radicals in cisplatin-induced acute renal failure in rats. , 1998, The Journal of laboratory and clinical medicine.

[28]  Kaiming Xu,et al.  Alteration of α1-adrenoceptor subtypes in aortas of 12-month-old spontaneously hypertensive rats , 1998 .

[29]  T. Philipp,et al.  Vasoconstriction of rat renal interlobar arteries by noradrenaline and neuropeptide Y. , 1997, Journal of autonomic pharmacology.

[30]  Conger Jd,et al.  Abnormal vascular function following ischemia-reperfusion injury. , 1995 .

[31]  T. Williams,et al.  Characterization of α1‐adrenoceptors mediating vasoconstriction to noradrenaline and nerve stimulation in the isolated perfused mesentery of rat , 1995, British journal of pharmacology.

[32]  E. Johns,et al.  α1-Adrenoceptor Subtypes Mediating Adrenergic Vasoconstriction in Kidney of Two Kidney, One‐Clip Goldblatt and Deoxycorticosterone Acetate‐Salt Hypertensive Rats , 1994 .

[33]  E. Johns,et al.  Evidence for an α1 Adrenoceptor Subtype Mediating Adrenergic Vasoconstriction in Wistar Normotensive and Stroke‐Prone Spontaneously Hypertensive Rat Kidney , 1994, Journal of cardiovascular pharmacology.

[34]  G. Tsujimoto,et al.  Glycogen phosphorylase activation by two different alpha 1-adrenergic receptor subtypes: methoxamine selectively stimulates a putative alpha 1-adrenergic receptor subtype (alpha 1a) that couples with Ca2+ influx. , 1989, Molecular pharmacology.

[35]  R. Safirstein,et al.  Reduced renal blood flow in early cisplatin-induced acute renal failure in the rat. , 1985, The American journal of physiology.