Conditions for Posterior Contraction in the Sparse Normal Means Problem
暂无分享,去创建一个
[1] H. Robbins. An Empirical Bayes Approach to Statistics , 1956 .
[2] D. F. Andrews,et al. Scale Mixtures of Normal Distributions , 1974 .
[3] I. Johnstone,et al. Maximum Entropy and the Nearly Black Object , 1992 .
[4] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[5] P. Damlen,et al. Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables , 1999 .
[6] A. V. D. Vaart,et al. Convergence rates of posterior distributions , 2000 .
[7] I. Johnstone,et al. Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences , 2004, math/0410088.
[8] J. Griffin,et al. Alternative prior distributions for variable selection with very many more variables than observations , 2005 .
[9] G. Casella,et al. The Bayesian Lasso , 2008 .
[10] Arnaud Doucet,et al. Sparse Bayesian nonparametric regression , 2008, ICML '08.
[11] James G. Scott,et al. The horseshoe estimator for sparse signals , 2010 .
[12] V. Johnson,et al. On the use of non‐local prior densities in Bayesian hypothesis tests , 2010 .
[13] J. Griffin,et al. Inference with normal-gamma prior distributions in regression problems , 2010 .
[14] James G. Scott,et al. Good, great, or lucky? Screening for firms with sustained superior performance using heavy-tailed priors , 2010, 1010.5223.
[15] James G. Scott,et al. On the half-cauchy prior for a global scale parameter , 2011, 1104.4937.
[16] A. V. D. Vaart,et al. Needles and Straw in a Haystack: Posterior concentration for possibly sparse sequences , 2012, 1211.1197.
[17] James G. Scott,et al. Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction , 2022 .
[18] Jayanta K. Ghosh,et al. Asymptotic Properties of Bayes Risk for the Horseshoe Prior , 2013 .
[19] Van Der Vaart,et al. The Horseshoe Estimator: Posterior Concentration around Nearly Black Vectors , 2014, 1404.0202.
[20] Prasenjit Ghosh,et al. Posterior Concentration Properties of a General Class of Shrinkage Priors around Nearly Black Vectors , 2014 .
[21] Stephen G. Walker,et al. Asymptotically minimax empirical Bayes estimation of a sparse normal mean vector , 2013, 1304.7366.
[22] Judith Rousseau,et al. On adaptive posterior concentration rates , 2013, 1305.5270.
[23] A. V. D. Vaart,et al. BAYESIAN LINEAR REGRESSION WITH SPARSE PRIORS , 2014, 1403.0735.
[24] Martin J. Wainwright,et al. On the Computational Complexity of High-Dimensional Bayesian Variable Selection , 2015, ArXiv.
[25] N. Pillai,et al. Dirichlet–Laplace Priors for Optimal Shrinkage , 2014, Journal of the American Statistical Association.
[26] Nicholas G. Polson,et al. The Horseshoe+ Estimator of Ultra-Sparse Signals , 2015, 1502.00560.
[27] V. Rocková,et al. Bayesian estimation of sparse signals with a continuous spike-and-slab prior , 2018 .