SISCHMAX: Discovering common contour patterns

Discovering common shape contour is a promising topic. However, local position and scale variance always leads to the mismatch of similar contours. In this study, we propose Shift Invariant Sparse Coding HMAX (SISCHMAX)to address this problem. Shift Invariant Sparse Coding is used to learn the configuration of line responses on the output of HMAX C1 layer. And we test the proposed method on Caltech101 dataset for discovering object contour. Due to the tolerance of local shift of the lines, sparse coding extracts better object contours using HMAX C1 outputs instead of gray value.

[1]  Andrew Zisserman,et al.  Image Classification using Random Forests and Ferns , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[2]  Alan L. Yuille,et al.  Feature extraction from faces using deformable templates , 2004, International Journal of Computer Vision.

[3]  J. Eggert,et al.  Sparse coding and NMF , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[4]  Rajat Raina,et al.  Self-taught learning: transfer learning from unlabeled data , 2007, ICML '07.

[5]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[6]  Heiko Wersing,et al.  Sparse Coding with Invariance Constraints , 2003, ICANN.

[7]  Prashant Parikh A Theory of Communication , 2010 .

[8]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[9]  Jonathan Le Roux,et al.  Adaptive Template Matching with Shift-Invariant Semi-NMF , 2008, NIPS.

[10]  Thomas Serre,et al.  Object recognition with features inspired by visual cortex , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[11]  S.M. Plis,et al.  Sparse shift-invariant NMF , 2008, 2008 IEEE Southwest Symposium on Image Analysis and Interpretation.

[12]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[13]  Manik Varma,et al.  Learning The Discriminative Power-Invariance Trade-Off , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[14]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[15]  Koji Kurata,et al.  Properties of basis functions generated by shift invariant sparse representations of natural images , 2000, Biological Cybernetics.

[16]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[17]  Gustavo Deco,et al.  Computational neuroscience of vision , 2002 .

[18]  David G. Lowe,et al.  University of British Columbia. , 1945, Canadian Medical Association journal.

[19]  Mário A. T. Figueiredo Adaptive Sparseness for Supervised Learning , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Lawrence Carin,et al.  Sparse multinomial logistic regression: fast algorithms and generalization bounds , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Mikkel N. Schmidt,et al.  Shift Invariant Sparse Coding of Image and Music Data , 2007 .

[22]  Tomaso Poggio,et al.  Learning a dictionary of shape-components in visual cortex: comparison with neurons, humans and machines , 2006 .

[23]  Andrew Zisserman,et al.  Learning an Alphabet of Shape and Appearance for Multi-Class Object Detection , 2008, International Journal of Computer Vision.

[24]  David D. Cox,et al.  Untangling invariant object recognition , 2007, Trends in Cognitive Sciences.

[25]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[26]  Jitendra Malik,et al.  SVM-KNN: Discriminative Nearest Neighbor Classification for Visual Category Recognition , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[27]  Patrik O. Hoyer,et al.  Non-negative Matrix Factorization with Sparseness Constraints , 2004, J. Mach. Learn. Res..

[28]  Marc'Aurelio Ranzato,et al.  Efficient Learning of Sparse Representations with an Energy-Based Model , 2006, NIPS.

[29]  Thomas Hofmann,et al.  Efficient Learning of Sparse Representations with an Energy-Based Model , 2007 .

[30]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  J. Eggert,et al.  Transformation-invariant representation and NMF , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[32]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[33]  Song-Chun Zhu,et al.  Deformable Template As Active Basis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[34]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[35]  Song-Chun Zhu,et al.  Learning mixed templates for object recognition , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Thomas Martinetz,et al.  Simple Method for High-Performance Digit Recognition Based on Sparse Coding , 2008, IEEE Transactions on Neural Networks.

[37]  David G. Lowe,et al.  Multiclass Object Recognition with Sparse, Localized Features , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[38]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[39]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[40]  Iasonas Kokkinos,et al.  Unsupervised Learning of Object Deformation Models , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[41]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[42]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.