Modeling and PSO optimization of Humidifier-Dehumidifier desalination

The aim of this study is modeling a solar-air heater humidification-dehumidification unit with applying particle swarm optimization to find out  the maximum gained output ratio with respect to the mass flow rate of water and air entering humidifier, mass flow rate of cooling water entering dehumidifier, width and length of solar air heater and terminal temperature difference (TTD) of dehumidifier representing temperature difference of inlet cooling water and saturated air to dehumidifier as its decision variable. A sensitivity analysis, furthermore, is performed to distinguish the effect of operating parameters including mass flow rate and streams’ temperature. The results showed that the optimum productivity decreases by decreasing the ratio of mass flow rate of water entering humidifier to air ones. Article History : Received: July 12th 2017; Revised: December 15th 2017; Accepted: 2nd February 2018; Available online How to Cite This Article : Afshar, M.A., Naseri, A., Bidi, M., Ahmadi, M.H. and Hadiyanto, H. (2018) Modeling and PSO Optimization of Humidifier-Dehumidifier Desalination. International Journal of Renewable Energy Development, 7(1),59-64. https://doi.org/10.14710/ijred.7.1.59-64

[1]  R. González,et al.  Design Algorithm of a Multi-Effect Humidification–Dehumidification Solar Distillation System , 2009 .

[2]  Jihong Wang,et al.  Exergy analysis and optimization of a hydrogen production process by a solar-liquefied natural gas hybrid driven transcritical CO2 power cycle , 2012 .

[3]  S. Kalogirou Solar Energy Engineering: Processes and Systems , 2009 .

[4]  Majid Amidpour,et al.  Constructal design of humidification–dehumidification desalination unit architecture , 2011 .

[5]  Majid Amidpour,et al.  Derivation of optimal geometry of a multi-effect humidification–dehumidification desalination unit: A constructal design , 2011 .

[6]  Majid Amidpour,et al.  Performance optimization of the humidification–dehumidification desalination process using mathematical programming , 2009 .

[7]  Karan H. Mistry,et al.  Optimal operating conditions and configurations for humidification–dehumidification desalination cycles , 2011 .

[8]  M. A. Darwish,et al.  Experimental and theoretical study of a humidification-dehumidification desalting system , 1993 .

[9]  Hisham Ettouney,et al.  Humidification dehumidification desalination process: Design and performance evaluation , 2008 .

[10]  Mokhtar Bidi,et al.  Exergy analysis of a hydrogen and water production process by a solar-driven transcritical CO2 power cycle with Stirling engine , 2017 .

[11]  Majid Amidpour,et al.  Cost optimization of a solar humidification-dehumidification desalination unit using mathematical programming , 2009 .

[12]  Cemil Yamali,et al.  Theoretical investigation of a humidification-dehumidification desalination system configured by a double-pass flat plate solar air heater , 2007 .

[13]  Efat Chafik,et al.  A new seawater desalination process using solar energy , 2003 .

[14]  Mokhtar Bidi,et al.  Thermodynamic and exergy analysis of a hydrogen and permeate water production process by a solar-driven transcritical CO2 power cycle with liquefied natural gas heat sink , 2017 .

[15]  Majid Amidpour,et al.  Constructal design and optimization of a direct contact humidification–dehumidification desalination unit , 2012 .

[16]  Kazuhiro Saitou,et al.  Optimum Solar HDH Desalination for Semi-Isolated Communities Using HGP and GA’s , 2014, DAC 2014.