Robust canonical correlation analysis: a predictive approach.
暂无分享,去创建一个
[1] Pierre Duchesne,et al. Robust estimation of the SUR model , 2000 .
[2] P. Rousseeuw. Multivariate estimation with high breakdown point , 1985 .
[3] Z. Bai,et al. ON CONSTRAINED M-ESTIMATION AND ITS RECURSIVE ANALOG IN MULTIVARIATE LINEAR REGRESSION MODELS , 2008 .
[4] Yuehua Wu,et al. A note on constrained M-estimation and its recursive analog in multivariate linear regression models , 2009 .
[5] K. Janssens,et al. Composition of 15-17th century archaeological glass vessels excavated in Antwerp, Belgium , 1998 .
[6] J. Friedman,et al. Predicting Multivariate Responses in Multiple Linear Regression , 1997 .
[7] M. Victoria-Feser,et al. A Robust Coefficient of Determination for Regression , 2010 .
[8] Hendrik P. Lopuhaä,et al. Highly efficient estimators of multivariate location with high breakdown point , 1992 .
[9] Hannu Oja,et al. Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices , 2006 .
[10] P. Sen,et al. Restricted canonical correlations , 1994 .
[11] Victor J. Yohai,et al. Canonical Variables as Optimal Predictors , 1980 .
[12] A. Izenman. Reduced-rank regression for the multivariate linear model , 1975 .
[13] Catherine Dehon,et al. Outlier resistant estimators for canonical correlation analysis , 2000 .
[14] Ricardo A. Maronna,et al. Estimates of MM type for the multivariate linear model , 2010, J. Multivar. Anal..
[15] David E. Tyler,et al. Constrained M-estimation for multivariate location and scatter , 1996 .
[16] Frederick R. Forst,et al. On robust estimation of the location parameter , 1980 .
[17] David E. Tyler,et al. On the uniqueness of S-functionals and M-functionals under nonelliptical distributions , 2000 .
[18] D. Brillinger. Time series - data analysis and theory , 1981, Classics in applied mathematics.
[19] V. Yohai,et al. Robust Statistics: Theory and Methods , 2006 .
[20] Catherine Dehon,et al. Analyse canonique basée sur des estimateurs robustes de la matrice de covariance , 2002 .
[21] S. Van Aelst,et al. Principal Components Analysis Based on Multivariate MM Estimators With Fast and Robust Bootstrap , 2006 .
[22] H. Hotelling. Relations Between Two Sets of Variates , 1936 .
[23] H. P. Lopuhaä. Multivariate τ‐estimators for location and scatter , 1991 .
[24] David R. Brillinger,et al. Time Series: Data Analysis and Theory. , 1982 .
[25] Stefan Van Aelst,et al. MULTIVARIATE REGRESSION S-ESTIMATORS FOR ROBUST ESTIMATION AND INFERENCE , 2005 .
[26] Gerald Karnel. Robust canonical correlation and correspondence analysis , 1991 .
[27] M. Romanazzi. Influence in canonical correlation analysis , 1992 .
[28] Peter Filzmoser,et al. Robust canonical correlations: A comparative study , 2005, Comput. Stat..
[29] Catherine Dehon,et al. Estimators of the multiple correlation coefficient: Local robustness and confidence intervals , 2003 .
[30] V. Yohai. HIGH BREAKDOWN-POINT AND HIGH EFFICIENCY ROBUST ESTIMATES FOR REGRESSION , 1987 .
[31] G. Seber. Multivariate observations / G.A.F. Seber , 1983 .
[32] V. Yohai,et al. Robust estimation for the multivariate linear model based on a τ-scale , 2006 .