XQ-100: A legacy survey of one hundred 3.5 ≲ z ≲ 4.5 quasars observed with VLT/X-shooter

FONDECYT [1140838]; ERC [320596]; Danish National Research Foundation; Danish Council for Independent Research [DFF - 4002-00275]; ERC-StG "cosmoIGM"; NSF AAPF fellowship under NSF grant [AST-1302093]; European Research Council [GA-257670]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; PRIN INAF; NSERC; National Aeronautics and Space Administration; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; [PFB-06 CATA]

[1]  Astrophysics,et al.  A downturn in intergalactic C iv as redshift 6 is approached , 2009, 0902.1991.

[2]  J. Xavier Prochaska,et al.  METALLICITY EVOLUTION OF DAMPED Lyα SYSTEMS OUT TO z ∼ 5 , 2012, 1205.5047.

[3]  A. Szalay,et al.  THE SLOAN DIGITAL SKY SURVEY QUASAR CATALOG. V. SEVENTH DATA RELEASE , 2010, 1004.1167.

[4]  Adam D. Myers,et al.  The Sloan Digital Sky Survey quasar catalog: tenth data release , 2013, 1311.4870.

[5]  R. Manuputy,et al.  X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope , 2011, 1110.1944.

[6]  P. Lira,et al.  Active galactic nuclei at z ∼ 1.5 – I. Spectral energy distribution and accretion discs , 2014, 1410.8137.

[7]  Wm. A. Wheaton,et al.  2MASS All Sky Catalog of point sources. , 2003 .

[8]  D. Kelson Optimal Techniques in Two‐dimensional Spectroscopy: Background Subtraction for the 21st Century , 2003, astro-ph/0303507.

[9]  The H I opacity of the intergalactic medium at redshifts 1.6 < z < 3.2 , 2005, astro-ph/0504391.

[10]  Cambridge,et al.  Metals in the IGM approaching the re-ionization epoch: results from X-shooter at the VLT , 2013, 1306.4604.

[11]  L. Cowie,et al.  THE EVOLUTION OF LYMAN LIMIT ABSORPTION SYSTEMS TO REDSHIFT SIX , 2010, 1007.3262.

[12]  High-Redshift Quasars and Star Formation in the Early Universe* , 2001, astro-ph/0109208.

[13]  J. Prochaska,et al.  A DEFINITIVE SURVEY FOR LYMAN LIMIT SYSTEMS AT z ∼ 3.5 WITH THE SLOAN DIGITAL SKY SURVEY , 2009, 0912.0292.

[14]  Xiaohui Fan,et al.  Gemini Near-Infrared Spectroscopy of Luminous z ∼ 6 Quasars: Chemical Abundances, Black Hole Masses, and Mg II Absorption , 2007, 0707.1663.

[15]  T. M. Evans,et al.  The UVES Large Program for testing fundamental physics I. Bounds on a change in α towards quasar HE 2217-2818 , 2013, 1305.1884.

[16]  The thermal history of the intergalactic medium , 1999, astro-ph/9912432.

[17]  J. Prochaska,et al.  ON THE (NON)EVOLUTION OF H i GAS IN GALAXIES OVER COSMIC TIME , 2008, 0811.2003.

[18]  High-Redshift Metals. I. The Decline of C IV at z > 5.3 , 2008, 0812.2856.

[19]  Predicting QSO Continua in the Lyα Forest , 2003, astro-ph/0306577.

[20]  A. Songaila The Properties of Intergalactic C IV and Si IV Absorption. I. Optimal Analysis of an Extremely High Signal-to-Noise Quasar Sample , 2005, astro-ph/0507649.

[21]  Caltech,et al.  IRON AND α-ELEMENT PRODUCTION IN THE FIRST ONE BILLION YEARS AFTER THE BIG BANG ,, , 2011, 1111.4843.

[22]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[23]  M. Viel,et al.  The rise of the C iv mass density at z < 2.5 , 2009, 0910.2126.

[24]  P. Marziani,et al.  VLT/ISAAC spectra of the Hβ region in intermediate-redshift quasars II. Black hole mass and Eddington ratio , , 2004, 0812.0251.

[25]  Stefan Kimeswenger,et al.  An advanced scattered moonlight model for Cerro Paranal , 2013, 1310.7030.

[26]  Xiaohui Fan,et al.  BLACK HOLE MASS ESTIMATES AND RAPID GROWTH OF SUPERMASSIVE BLACK HOLES IN LUMINOUS z ∼ 3.5 QUASARS , 2014, The Astrophysical Journal.

[27]  A. Myers,et al.  The one-dimensional Lyα forest power spectrum from BOSS , 2013, 1306.5896.

[28]  The Evolution of Optical Depth in the Lyα Forest: Evidence Against Reionization at z~6* , 2006, astro-ph/0607633.

[29]  M. T. Murphy,et al.  Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra , 2003 .

[30]  Patrick Petitjean,et al.  Molecular Hydrogen in high redshift Damped Lyman-α systems , 2002 .

[31]  M. Irwin,et al.  Evolution of Lyman-limit absorption systems over the redshift range 0.40 < Z < 4.69 , 1994 .

[32]  M. Dietrich,et al.  Fe II/Mg II Emission-Line Ratio in High-Redshift Quasars , 2003 .

[33]  W. Kausch,et al.  An atmospheric radiation model for Cerro Paranal - I. The optical spectral range , 2012, 1205.2003.

[34]  Scott Burles,et al.  Toward a Precise Measurement of Matter Clustering: Lyα Forest Data at Redshifts 2-4 , 2000 .

[35]  D. York,et al.  A SINFONI integral field spectroscopy survey for galaxy counterparts to damped Lyman α systems – I. New detections and limits for intervening and associated absorbers* , 2010, 1009.0025.

[36]  J. Baldwin,et al.  Metallicities and Abundance Ratios from Quasar Broad Emission Lines , 2001, astro-ph/0109006.

[37]  V. Wild,et al.  Probing star formation across cosmic time with absorption line systems , 2009, 0912.3263.

[38]  M. Viel Inferring the dark matter power spectrum from the Lyman-Alpha forest in high-resulotion QSO absorption spectra , 2004 .

[39]  T. O. S. University,et al.  MASS FUNCTIONS OF THE ACTIVE BLACK HOLES IN DISTANT QUASARS FROM THE LARGE BRIGHT QUASAR SURVEY, THE BRIGHT QUASAR SURVEY, AND THE COLOR-SELECTED SAMPLE OF THE SDSS FALL EQUATORIAL STRIPE , 2009, 0904.3348.

[40]  E. Malanushenko,et al.  Column density distribution and cosmological mass density of neutral gas: Sloan Digital Sky Survey-III Data Release 9 , 2012, 1210.1213.

[41]  Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars. , 2004, Physical review letters.

[42]  J. Bochanski,et al.  CONSTRAINTS ON THE UNIVERSAL C iv MASS DENSITY AT z ∼ 6 FROM EARLY INFRARED SPECTRA OBTAINED WITH THE MAGELLAN FIRE SPECTROGRAPH , 2011, 1104.4117.

[43]  P. Marziani,et al.  VLT/ISAAC spectra of the Hβ region in intermediate-redshift quasars II. Black hole mass and Eddington ratio , , 2006, astro-ph/0606309.

[44]  L. Ho,et al.  SIMULTANEOUS ULTRAVIOLET AND OPTICAL EMISSION-LINE PROFILES OF QUASARS: IMPLICATIONS FOR BLACK HOLE MASS DETERMINATION , 2012, 1205.3224.

[45]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[46]  D. Grupe,et al.  BLACK HOLE MASSES OF INTERMEDIATE-REDSHIFT QUASARS: NEAR-INFRARED SPECTROSCOPY , 2009, 0901.3378.

[47]  Rupert A. C. Croft,et al.  Recovery of the Power Spectrum of Mass Fluctuations from Observations of the Lyα Forest , 1998 .

[48]  E. Flesch The Half Million Quasars (HMQ) Catalogue , 2015, Publications of the Astronomical Society of Australia.

[49]  N. Suzuki,et al.  The Cosmological Baryon Density from the Deuterium-to-Hydrogen Ratio in QSO Absorption Systems: D/H toward Q1243+3047 , 2003, astro-ph/0302006.

[50]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[51]  S. George Djorgovski,et al.  Virtual astronomy, information technology, and the new scientific methodology , 2005, Seventh International Workshop on Computer Architecture for Machine Perception (CAMP'05).

[52]  Volker Springel,et al.  Inferring the dark matter power spectrum from the Lyman α forest in high-resolution QSO absorption spectra , 2004, astro-ph/0404600.

[53]  Robert J. Brunner,et al.  Massive datasets in astronomy , 2001 .

[54]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[55]  V. Wild,et al.  WHAT DETERMINES THE INCIDENCE AND EXTENT OF Mg ii ABSORBING GAS AROUND GALAXIES? , 2010, 1011.0735.

[56]  George D. Becker,et al.  The Giant Gemini GMOS survey of zem > 4.4 quasars – I. Measuring the mean free path across cosmic time , 2014, 1402.4154.

[57]  W. M. Wood-Vasey,et al.  The Sloan Digital Sky Survey quasar catalog: ninth data release , 2012, 1210.5166.

[58]  P. Hewett,et al.  BLACK HOLE MASS ESTIMATES AND EMISSION-LINE PROPERTIES OF A SAMPLE OF REDSHIFT z > 6.5 QUASARS , 2013, 1311.3260.

[59]  A. Popping,et al.  The ESO UVES advanced data products quasar sample - I. Dataset and new NH I measurements of damped absorbers , 2013, 1307.0678.

[60]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[61]  M. Viel,et al.  Relativistic effects in Lyman-α forest , 2015, 1510.03436.

[62]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[63]  F. Fontanot,et al.  The quasar proximity effect at redshift 〈z〉≃ 2.6 with the From Lines to Overdensities approach★ , 2008 .

[64]  W. Freudling,et al.  Automated data reduction workflows for astronomy , 2013, 1311.5411.

[65]  The Sources of intergalactic metals , 2005, astro-ph/0503001.

[66]  M. Viel,et al.  Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data , 2013, 1306.2314.

[67]  C. Steidel,et al.  THE GASEOUS ENVIRONMENT OF HIGH-z GALAXIES: PRECISION MEASUREMENTS OF NEUTRAL HYDROGEN IN THE CIRCUMGALACTIC MEDIUM OF z ∼ 2–3 GALAXIES IN THE KECK BARYONIC STRUCTURE SURVEY , 2012, 1202.6055.

[68]  R. Carswell,et al.  The physical properties of the Lyα forest at z > 1.5 , 2002, astro-ph/0205237.

[69]  M. Calvani,et al.  VLT/ISAAC spectra of the Hβ region in intermediate redshift quasars , 2004 .

[70]  B. M'enard,et al.  THE JHU-SDSS METAL ABSORPTION LINE CATALOG: REDSHIFT EVOLUTION AND PROPERTIES OF Mg ii ABSORBERS , 2012, 1211.6215.

[71]  J. Prochaska,et al.  A DIRECT MEASUREMENT OF THE INTERGALACTIC MEDIUM OPACITY TO H i IONIZING PHOTONS , 2009, 0910.0009.

[72]  J. Prochaska,et al.  GALEX FAR-ULTRAVIOLET COLOR SELECTION OF UV-BRIGHT HIGH-REDSHIFT QUASARS , 2010, 1004.3347.

[73]  R. Croft,et al.  Recovery of the Power Spectrum of Mass Fluctuations from Observations of the Lyα Forest , 1997, astro-ph/9708018.

[74]  Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships , 2006, astro-ph/0601303.

[75]  Melbourne.,et al.  Measurements of the UV background at 4.6 < z < 6.4 using the quasar proximity effect , 2010, 1011.5850.

[76]  W. Sargent,et al.  Metallicity of the Intergalactic Medium Using Pixel Statistics. III. Silicon , 2003, astro-ph/0310664.

[77]  J. X. Prochaska,et al.  The evolution of neutral gas in damped Lyman α systems from the XQ-100 survey , 2015, 1511.05003.

[78]  G. B. Berriman,et al.  THE FIRST DATA RELEASE OF THE KODIAQ SURVEY , 2015, 1505.03529.

[79]  Jason X. Prochaska,et al.  The Age-Metallicity Relation of the Universe in Neutral Gas: The First 100 Damped Lyα Systems , 2003 .

[80]  S. Cristiani,et al.  Chemical abundances in quasar host galaxies and environments from narrow absorption line systems , 2004, astro-ph/0402043.

[81]  Limin Lu,et al.  Abundances at High Redshifts: The Chemical Enrichment History of Damped Lyα Galaxies , 1996, astro-ph/9606044.

[82]  Elemental Abundances in Quasistellar Objects: Star Formation and Galactic Nuclear Evolution at High Redshifts , 1999, astro-ph/9904223.

[83]  S. Cristiani,et al.  Chemical abundances in QSO host galaxies and environments , 2004 .

[84]  P. Madau,et al.  Evidence of patchy hydrogen reionization from an extreme Lyα trough below redshift six , 2014, 1407.4850.

[85]  R. Simcoe,et al.  A SURVEY OF Mg ii ABSORPTION AT 2 < z < 6 WITH MAGELLAN/FIRE. I. SAMPLE AND EVOLUTION OF THE Mg ii FREQUENCY , 2012, 1201.3919.

[86]  M. Viel,et al.  Cosmological and astrophysical constraints from the Lyman α forest flux probability distribution function , 2009, 0907.2927.

[87]  Lutz Wisotzki,et al.  An unbiased measurement of the UV background and its evolution via the proximity effect in quasar spectra , 2008, 0807.5089.