Phase diagram of the helical structure of a two-subsystem frustrated antiferromagnet
暂无分享,去创建一个
[1] S. Khlebnikov. “Josephson effect in thin films: The role of vortex excitations” Pis’ma Zh. Éksp. Teor. Fiz. 85, 74 (2007) [JETP Lett. 85, 67 (2007)] , 2007 .
[2] M. Baran,et al. Magnetic phase diagram of copper metaborate CuB2O4 in magnetic field parallel to c-axis , 2006 .
[3] A. I. Smirnov,et al. New magnetic states in crystals , 2005 .
[4] S. Cheong,et al. Emergent excitations in a geometrically frustrated magnet , 2002, Nature.
[5] D. Huse,et al. Multiple field-induced phase transitions in the geometrically frustrated dipolar magnet: Gd(2) Ti(2)O(7). , 2001, Physical review letters.
[6] M. Green,et al. Order in the Heisenberg pyrochlore: The magnetic structure of Gd2Ti2O7 , 2001, cond-mat/0105043.
[7] H. Kawamura,et al. Ground-state phase diagrams of frustrated spin- S XXZ chains: Chiral ordered phases , 2000, cond-mat/0010283.
[8] Visser,et al. Chiral critical exponents of the triangular-lattice antiferromagnet CsMnBr3 as determined by polarized neutron scattering , 2000, Physical review letters.
[9] A. Honecker,et al. Field induced ordering in highly frustrated antiferromagnets. , 2000, Physical review letters.
[10] T. Mason,et al. Transition to long-range magnetic order in the highly frustrated insulating pyrochlore antiferromagnet Gd 2 Ti 2 O 7 , 1999, cond-mat/9906043.
[11] R. Moessner,et al. Properties of a classical spin liquid: the Heisenberg pyrochlore antiferromagnet , 1997, cond-mat/9712063.
[12] Zhitomirsky. Magnetic phase diagram of a partially frustrated triangular antiferromagnet: The row model. , 1996, Physical review. B, Condensed matter.
[13] Zhang,et al. Row generalization of the fully frustrated triangular XY model. , 1991, Physical review. B, Condensed matter.
[14] H. Kawamura. Phase Transition of the Three-Dimensional Heisenberg Antiferromagnet on the Layered-Triangular Lattice , 1985 .
[15] Svatopluk Krupička. Physik der Ferrite und der verwandten magnetischen Oxide , 1973 .
[16] N. Menyuk,et al. CLASSICAL THEORY OF THE GROUND SPIN-STATE IN NORMAL TETRAGONAL SPINELS. I. NEEL, YAFET-KITTEL, AND COLLINEAR ANTIFERROMAGNETIC MODES, , 1962 .
[17] N. Menyuk,et al. Classical Theory of the Ground Spin-State in Cubic Spinels , 1962 .
[18] N. Menyuk,et al. Classical Theory of the Ground Spin State in Spinels , 1961 .
[19] T. Kaplan,et al. Method for Determining Ground-State Spin Configurations , 1960 .
[20] T. Moriya. Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .
[21] T. Kaplan. Classical Spin-Configuration Stability in the Presence of Competing Exchange Forces , 1959 .