Phase diagram of the helical structure of a two-subsystem frustrated antiferromagnet

[1]  S. Khlebnikov “Josephson effect in thin films: The role of vortex excitations” Pis’ma Zh. Éksp. Teor. Fiz. 85, 74 (2007) [JETP Lett. 85, 67 (2007)] , 2007 .

[2]  M. Baran,et al.  Magnetic phase diagram of copper metaborate CuB2O4 in magnetic field parallel to c-axis , 2006 .

[3]  A. I. Smirnov,et al.  New magnetic states in crystals , 2005 .

[4]  S. Cheong,et al.  Emergent excitations in a geometrically frustrated magnet , 2002, Nature.

[5]  D. Huse,et al.  Multiple field-induced phase transitions in the geometrically frustrated dipolar magnet: Gd(2) Ti(2)O(7). , 2001, Physical review letters.

[6]  M. Green,et al.  Order in the Heisenberg pyrochlore: The magnetic structure of Gd2Ti2O7 , 2001, cond-mat/0105043.

[7]  H. Kawamura,et al.  Ground-state phase diagrams of frustrated spin- S XXZ chains: Chiral ordered phases , 2000, cond-mat/0010283.

[8]  Visser,et al.  Chiral critical exponents of the triangular-lattice antiferromagnet CsMnBr3 as determined by polarized neutron scattering , 2000, Physical review letters.

[9]  A. Honecker,et al.  Field induced ordering in highly frustrated antiferromagnets. , 2000, Physical review letters.

[10]  T. Mason,et al.  Transition to long-range magnetic order in the highly frustrated insulating pyrochlore antiferromagnet Gd 2 Ti 2 O 7 , 1999, cond-mat/9906043.

[11]  R. Moessner,et al.  Properties of a classical spin liquid: the Heisenberg pyrochlore antiferromagnet , 1997, cond-mat/9712063.

[12]  Zhitomirsky Magnetic phase diagram of a partially frustrated triangular antiferromagnet: The row model. , 1996, Physical review. B, Condensed matter.

[13]  Zhang,et al.  Row generalization of the fully frustrated triangular XY model. , 1991, Physical review. B, Condensed matter.

[14]  H. Kawamura Phase Transition of the Three-Dimensional Heisenberg Antiferromagnet on the Layered-Triangular Lattice , 1985 .

[15]  Svatopluk Krupička Physik der Ferrite und der verwandten magnetischen Oxide , 1973 .

[16]  N. Menyuk,et al.  CLASSICAL THEORY OF THE GROUND SPIN-STATE IN NORMAL TETRAGONAL SPINELS. I. NEEL, YAFET-KITTEL, AND COLLINEAR ANTIFERROMAGNETIC MODES, , 1962 .

[17]  N. Menyuk,et al.  Classical Theory of the Ground Spin-State in Cubic Spinels , 1962 .

[18]  N. Menyuk,et al.  Classical Theory of the Ground Spin State in Spinels , 1961 .

[19]  T. Kaplan,et al.  Method for Determining Ground-State Spin Configurations , 1960 .

[20]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[21]  T. Kaplan Classical Spin-Configuration Stability in the Presence of Competing Exchange Forces , 1959 .