Superconvergence analysis for Maxwell's equations in dispersive media

In this paper, we consider the time dependent Maxwell's equations in dispersive media on a bounded three-dimensional domain. Global superconvergence is obtained for semi-discrete mixed finite element methods for three most popular dispersive media models: the isotropic cold plasma, the one-pole Debye medium, and the two-pole Lorentz medium. Global superconvergence for a standard finite element method is also presented. To our best knowledge, this is the first superconvergence analysis obtained for Maxwell's equations when dispersive media are involved.

[1]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[2]  B. Zakhariev,et al.  Direct and Inverse Problems , 1990 .

[3]  Jun Zou,et al.  Fully discrete finite element approaches for time-dependent Maxwell's equations , 1999, Numerische Mathematik.

[4]  Ilaria Perugia,et al.  Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator , 2005 .

[5]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[6]  Jichun Li,et al.  Analysis of a time-domain finite element method for 3-D Maxwell’s equations in dispersive media , 2006 .

[7]  D. Jiao,et al.  Time-domain finite-element modeling of dispersive media , 2001, IEEE Microwave and Wireless Components Letters.

[8]  Qun Lin,et al.  Global superconvergence for Maxwell's equations , 2000, Math. Comput..

[9]  Leszek Demkowicz,et al.  Fully automatic hp-adaptivity for Maxwell's equations , 2005 .

[10]  Qiang Chen,et al.  An FDTD formulation for dispersive media using a current density , 1998 .

[11]  Jichun Li Error analysis of finite element methods for 3-D Maxwell's equations in dispersive media , 2006 .

[12]  Ningning Yan,et al.  Superconvergent derivative recovery for the intermediate finite element family of the second type , 2001 .

[13]  Zhiming Chen,et al.  Finite Element Methods with Matching and Nonmatching Meshes for Maxwell Equations with Discontinuous Coefficients , 2000, SIAM J. Numer. Anal..

[14]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[15]  Steven A. Cummer,et al.  An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy , 1997 .

[16]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[17]  Jichun Li,et al.  Error analysis of fully discrete mixed finite element schemes for 3-D Maxwell’s equations in dispersive media , 2007 .

[18]  김덕영 [신간안내] Computational Electrodynamics (the finite difference time - domain method) , 2001 .

[19]  Fernando Reitich,et al.  High-order RKDG Methods for Computational Electromagnetics , 2005, J. Sci. Comput..

[20]  Mary F. Wheeler,et al.  Uniform Convergence and Superconvergence of Mixed Finite Element Methods on Anisotropically Refined Grids , 2000, SIAM J. Numer. Anal..

[21]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[22]  Peter Monk,et al.  An analysis of Ne´de´lec's method for the spatial discretization of Maxwell's equations , 1993 .

[23]  Peter Monk,et al.  Superconvergence of finite element approximations to Maxwell's equations , 1994 .

[24]  Chi-Wang Shu,et al.  Locally divergence-free discontinuous Galerkin methods for the Maxwell equations , 2004, Journal of Computational Physics.

[25]  Mark Ainsworth,et al.  Topics in Computational Wave Propagation , 2003 .

[26]  Pekka Neittaanmäki,et al.  Bibliography on superconvergence , 1998 .

[27]  Pingwen Zhang,et al.  Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions , 2004 .

[28]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[29]  P. Neittaanmäki,et al.  Mathematical and Numerical Aspects of Wave Propagation WAVES 2003 , 2003 .

[30]  L. Demkowicz,et al.  Maxwell eigenvalues and discrete compactness in two dimensions , 2000 .

[31]  William L. Kath,et al.  Mathematical and Numerical Aspects of Wave Propagation , 1998 .

[32]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[33]  J. S. Shang,et al.  Computational electromagnetics , 1996, CSUR.