Superconvergence analysis for Maxwell's equations in dispersive media
暂无分享,去创建一个
[1] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[2] B. Zakhariev,et al. Direct and Inverse Problems , 1990 .
[3] Jun Zou,et al. Fully discrete finite element approaches for time-dependent Maxwell's equations , 1999, Numerische Mathematik.
[4] Ilaria Perugia,et al. Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator , 2005 .
[5] Allen Taflove,et al. Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .
[6] Jichun Li,et al. Analysis of a time-domain finite element method for 3-D Maxwell’s equations in dispersive media , 2006 .
[7] D. Jiao,et al. Time-domain finite-element modeling of dispersive media , 2001, IEEE Microwave and Wireless Components Letters.
[8] Qun Lin,et al. Global superconvergence for Maxwell's equations , 2000, Math. Comput..
[9] Leszek Demkowicz,et al. Fully automatic hp-adaptivity for Maxwell's equations , 2005 .
[10] Qiang Chen,et al. An FDTD formulation for dispersive media using a current density , 1998 .
[11] Jichun Li. Error analysis of finite element methods for 3-D Maxwell's equations in dispersive media , 2006 .
[12] Ningning Yan,et al. Superconvergent derivative recovery for the intermediate finite element family of the second type , 2001 .
[13] Zhiming Chen,et al. Finite Element Methods with Matching and Nonmatching Meshes for Maxwell Equations with Discontinuous Coefficients , 2000, SIAM J. Numer. Anal..
[14] L. Wahlbin. Superconvergence in Galerkin Finite Element Methods , 1995 .
[15] Steven A. Cummer,et al. An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy , 1997 .
[16] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[17] Jichun Li,et al. Error analysis of fully discrete mixed finite element schemes for 3-D Maxwell’s equations in dispersive media , 2007 .
[18] 김덕영. [신간안내] Computational Electrodynamics (the finite difference time - domain method) , 2001 .
[19] Fernando Reitich,et al. High-order RKDG Methods for Computational Electromagnetics , 2005, J. Sci. Comput..
[20] Mary F. Wheeler,et al. Uniform Convergence and Superconvergence of Mixed Finite Element Methods on Anisotropically Refined Grids , 2000, SIAM J. Numer. Anal..
[21] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[22] Peter Monk,et al. An analysis of Ne´de´lec's method for the spatial discretization of Maxwell's equations , 1993 .
[23] Peter Monk,et al. Superconvergence of finite element approximations to Maxwell's equations , 1994 .
[24] Chi-Wang Shu,et al. Locally divergence-free discontinuous Galerkin methods for the Maxwell equations , 2004, Journal of Computational Physics.
[25] Mark Ainsworth,et al. Topics in Computational Wave Propagation , 2003 .
[26] Pekka Neittaanmäki,et al. Bibliography on superconvergence , 1998 .
[27] Pingwen Zhang,et al. Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions , 2004 .
[28] A. Quarteroni,et al. Numerical Approximation of Partial Differential Equations , 2008 .
[29] P. Neittaanmäki,et al. Mathematical and Numerical Aspects of Wave Propagation WAVES 2003 , 2003 .
[30] L. Demkowicz,et al. Maxwell eigenvalues and discrete compactness in two dimensions , 2000 .
[31] William L. Kath,et al. Mathematical and Numerical Aspects of Wave Propagation , 1998 .
[32] Carretera de Valencia,et al. The finite element method in electromagnetics , 2000 .
[33] J. S. Shang,et al. Computational electromagnetics , 1996, CSUR.