On nonparametric tests for symmetry inRm

This paper considers the problem for testing symmetry of a distribution inRm based on the empirical distribution function. Limit theorems which play important roles for investigating asymptotic behavior of such tests are obtained. The limit processes of the theorems are multiparameter Wiener process. Based on the limit theorems, nonparametric tests are proposed whose asymptotic distributions are functionals of a multiparameter standard Wiener process. The tests are compared asymptotically with each other in the sense of Bahadur.

[1]  A. Koning Approximation of Stochastic Integrals with Applications to Goodness-of-Fit Tests , 1992 .

[2]  Harry S. Wieand,et al.  A Condition Under Which the Pitman and Bahadur Approaches to Efficiency Coincide , 1976 .

[3]  R. Adler An introduction to continuity, extrema, and related topics for general Gaussian processes , 1990 .

[4]  Miklos Csorgo,et al.  On the limiting distribution of and critical values for the multivariate Cramér-von Mises , 1982 .

[5]  E. Giné,et al.  Lectures on the central limit theorem for empirical processes , 1986 .

[6]  M. Ledoux,et al.  Conditions D'Integrabilite Pour Les Multiplicateurs Dans le TLC Banachique , 1986 .

[7]  G. Martynov Computation of Distribution Functions of Quadratic Forms of Normally Distributed Random Variables , 1976 .

[8]  V. Zolotarev Concerning a Certain Probability Problem , 1961 .

[9]  Sándor Csörgő,et al.  Testing for symmetry , 1987 .

[10]  Derek S. Cotterill,et al.  ON THE LIMITING DISTRIBUTION OF AND CRITICAL VALUES FOR THE HOEFFDING, BLUM, KIEFER, ROSENBLATT INDEPENDENCE CRITERION , 1985 .

[11]  Michael Woodroofe,et al.  A Cramer Von-Mises Type Statistic for Testing Symmetry , 1972 .

[12]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[13]  Asymptotic properties of some goodness-of-fit tests based on the L1-norm , 1989 .

[14]  E. Khmaladze,et al.  An innovation approach to goodness of fit tests in $R m$ , 1988 .

[15]  Sigeo Aki On nonparametric tests for symmetry , 1987 .

[16]  R. R. Bahadur Stochastic comparison of tests , 1960 .

[17]  J. Imhof Computing the distribution of quadratic forms in normal variables , 1961 .

[18]  Peter J. Bickel,et al.  Convergence Criteria for Multiparameter Stochastic Processes and Some Applications , 1971 .

[19]  J. Kiefer,et al.  DISTRIBUTION FREE TESTS OF INDEPENDENCE BASED ON THE SAMPLE DISTRIBUTION FUNCTION , 1961 .

[20]  D. Pollard Empirical Processes: Theory and Applications , 1990 .

[21]  S. Hu THE STRONG UNIFORM CONSISTENCY OF KERNEL DENSITY ESTIMATES FOR φ—MIXING SAMPLE , 1993 .

[22]  E. Giné,et al.  Some Limit Theorems for Empirical Processes , 1984 .

[23]  C. Butler,et al.  A Test for Symmetry Using the Sample Distribution Function , 1969 .