Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants

Context. We still do not understand which physical mechanisms are responsible for the transport of angular momentum inside stars. The recent detection of mixed modes that contain the clear signature of rotation in the spectra of Kepler subgiants and red giants gives us the opportunity to make progress on this question.Aims. Our aim is to probe the radial dependence of the rotation profiles for a sample of Kepler targets. For this purpose, subgiants and early red giants are particularly interesting targets because their rotational splittings are more sensitive to the rotation outside the deeper core than is the case for their more evolved counterparts.Methods. We first extracted the rotational splittings and frequencies of the modes for six young Kepler red giants. We then performed a seismic modeling of these stars using the evolutionary codes Cesam2k and astec. By using the observed splittings and the rotational kernels of the optimal models, we inverted the internal rotation profiles of the six stars.Results. We obtain estimates of the core rotation rates for these stars, and upper limits to the rotation in their convective envelope. We show that the rotation contrast between the core and the envelope increases during the subgiant branch. Our results also suggest that the core of subgiants spins up with time, while their envelope spins down. For two of the stars, we show that a discontinuous rotation profile with a deep discontinuity reproduces the observed splittings significantly better than a smooth rotation profile. Interestingly, the depths that are found to be most probable for the discontinuities roughly coincide with the location of the H-burning shell, which separates the layers that contract from those that expand.Conclusions. We characterized the differential rotation pattern of six young giants with a range of metallicities, and with both radiative and convective cores on the main sequence. This will bring observational constraints to the scenarios of angular momentum transport in stars. Moreover, if the existence of sharp gradients in the rotation profiles of young red giants is confirmed, it is expected to help in distinguishing between the physical processes that could transport angular momentum in the subgiant and red giant branches.

[1]  T. Appourchaux,et al.  ASTEROSEISMIC FUNDAMENTAL PROPERTIES OF SOLAR-TYPE STARS OBSERVED BY THE NASA KEPLER MISSION , 2013, 1310.4001.

[2]  Laurent Gizon,et al.  Seismic constraints on rotation of Sun-like star and mass of exoplanet , 2013, Proceedings of the National Academy of Sciences.

[3]  S. Bloemen,et al.  Atmospheric parameters of 169 F-, G-, K- and M-type stars in the Kepler field , 2013, 1306.6011.

[4]  M. Pinsonneault,et al.  IMPLICATIONS OF RAPID CORE ROTATION IN RED GIANTS FOR INTERNAL ANGULAR MOMENTUM TRANSPORT IN STARS , 2013, 1306.3986.

[5]  M. Pinsonneault,et al.  FAST STAR, SLOW STAR; OLD STAR, YOUNG STAR: SUBGIANT ROTATION AS A POPULATION AND STELLAR PHYSICS DIAGNOSTIC , 2013, 1306.3701.

[6]  P. Eggenberger,et al.  Understanding angular momentum transport in red giants: the case of KIC 7341231 , 2013, Astronomy & Astrophysics.

[7]  M. Dupret,et al.  Non-perturbative effect of rotation on dipolar mixed modes in red giant stars , 2013, 1303.0162.

[8]  K. Kinemuchi,et al.  OBSERVATIONS OF INTENSITY FLUCTUATIONS ATTRIBUTED TO GRANULATION AND FACULAE ON SUN-LIKE STARS FROM THE KEPLER MISSION , 2013, 1302.5563.

[9]  T. Bedding,et al.  PROPERTIES OF OSCILLATION MODES IN SUBGIANT STARS OBSERVED BY KEPLER , 2013, 1302.4143.

[10]  B. Mosser,et al.  Asymptotic and measured large frequency separations , 2012, 1212.1687.

[11]  Y. Lebreton,et al.  Seismic diagnostics for transport of angular momentum in stars. I. Rotational splittings from the pre-main sequence to the red-giant branch. , 2012, 1211.1271.

[12]  M. Pinsonneault,et al.  CHARACTERIZING TWO SOLAR-TYPE KEPLER SUBGIANTS WITH ASTEROSEISMOLOGY: KIC 10920273 AND KIC 11395018 , 2012, 1211.6650.

[13]  B. Mosser,et al.  Seismic diagnostics for transport of angular momentum in stars 2. Interpreting observed rotational splittings of slowly-rotating red giant stars , 2012, 1211.1546.

[14]  J. De Ridder,et al.  FUNDAMENTAL PROPERTIES OF STARS USING ASTEROSEISMOLOGY FROM KEPLER AND CoRoT AND INTERFEROMETRY FROM THE CHARA ARRAY , 2012, 1210.0012.

[15]  M. Pinsonneault,et al.  Spin down of the core rotation in red giants , 2012, 1209.3336.

[16]  P. Tenenbaum,et al.  VERIFYING ASTEROSEISMICALLY DETERMINED PARAMETERS OF KEPLER STARS USING HIPPARCOS PARALLAXES: SELF-CONSISTENT STELLAR PROPERTIES AND DISTANCES , 2012, 1208.6294.

[17]  P. Eggenberger,et al.  Angular momentum transport in stellar interiors constrained by rotational splittings of mixed modes in red giants , 2012, 1207.1023.

[18]  J. Schou,et al.  SEISMIC EVIDENCE FOR A RAPIDLY ROTATING CORE IN A LOWER-GIANT-BRANCH STAR OBSERVED WITH KEPLER , 2012, 1206.3312.

[19]  P. Quirion,et al.  Accurate fundamental parameters and detailed abundance patterns from spectroscopy of 93 solar-type Kepler targets , 2012 .

[20]  M. F. Andersen,et al.  Atmospheric parameters of 82 red giants in the Kepler field , 2012, 1205.5642.

[21]  P. Quirion,et al.  Accurate parameters of 93 solar-type Kepler targets , 2012, 1203.0611.

[22]  J. De Ridder,et al.  Probing the core structure and evolution of red giants using gravity-dominated mixed modes observed with Kepler , 2012, 1203.0689.

[23]  C. Karoff Temporal variations in the acoustic signal from faculae , 2012, 1201.2539.

[24]  T. Bedding,et al.  MASSES OF SUBGIANT STARS FROM ASTEROSEISMOLOGY USING THE COUPLING STRENGTHS OF MIXED MODES , 2012, 1201.1067.

[25]  H. M. Antia,et al.  Oscillation mode linewidths of main-sequence and subgiant stars observed by Kepler , 2011, 1112.3295.

[26]  Paul G. Beck,et al.  Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes , 2011, Nature.

[27]  Travis S. Metcalfe,et al.  A REVISED EFFECTIVE TEMPERATURE SCALE FOR THE KEPLER INPUT CATALOG , 2011, 1110.4456.

[28]  J. De Ridder,et al.  Characterization of the power excess of solar-like oscillations in red giants with Kepler , 2011, 1110.0980.

[29]  S. Korzennik,et al.  The Dynamics of the Solar Radiative Zone , 2011, 1205.3143.

[30]  J. De Ridder,et al.  TESTING SCALING RELATIONS FOR SOLAR-LIKE OSCILLATIONS FROM THE MAIN SEQUENCE TO RED GIANTS USING KEPLER DATA , 2011, 1109.3460.

[31]  S. Deheuvels,et al.  Constraints on the structure of the core of subgiants via mixed modes: the case of HD 49385 , 2011, 1109.1191.

[32]  P. Gaulme,et al.  Asteroseismology from multi-month Kepler photometry: the evolved Sun-like stars KIC 10273246 and KIC 10920273 , 2011, 1108.3807.

[33]  J. Zahn,et al.  Magnetic confinement of the solar tachocline: II. Coupling to a convection zone , 2011, 1107.3665.

[34]  J. De Ridder,et al.  Mixed modes in red-giant stars observed with CoRoT , 2011, 1105.6113.

[35]  J. Ballot,et al.  Visibilities and bolometric corrections for stellar oscillation modes observed by Kepler , 2011, 1105.4557.

[36]  C. Aerts,et al.  Kepler Detected Gravity-Mode Period Spacings in a Red Giant Star , 2011, Science.

[37]  Conny Aerts,et al.  Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars , 2011, Nature.

[38]  P. Gaulme,et al.  SOLAR-LIKE OSCILLATIONS IN KIC 11395018 AND KIC 11234888 FROM 8 MONTHS OF KEPLER DATA , 2011, 1103.4085.

[39]  Pieter Degroote,et al.  HERMES: a high-resolution fibre-fed spectrograph for the Mercator telescope , 2010, 1011.0258.

[40]  S. Dreizler,et al.  A PRECISE ASTEROSEISMIC AGE AND RADIUS FOR THE EVOLVED SUN-LIKE STAR KIC 11026764 , 2010, 1010.4329.

[41]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[42]  M. R. Haas,et al.  INITIAL CHARACTERISTICS OF KEPLER LONG CADENCE DATA FOR DETECTING TRANSITING PLANETS , 2010, 1001.0256.

[43]  S. Deheuvels,et al.  New insights on the interior of solar-like pulsators thanks to CoRoT: the case of HD 49385 , 2009, 0912.2834.

[44]  M. Pinsonneault,et al.  ANGULAR MOMENTUM TRANSPORT IN SOLAR-TYPE STARS: TESTING THE TIMESCALE FOR CORE–ENVELOPE COUPLING , 2009, 0911.1121.

[45]  O. Benomar,et al.  The solar-like oscillations of HD 49933: a Bayesian approach , 2009 .

[46]  H. Bruntt CoRoT space mission : early results Special feature Accurate fundamental parameters of CoRoT asteroseismic targets The solar-like stars HD 49933 , HD 175726 , HD 181420 , and HD 181906 , 2009 .

[47]  A. Miglio,et al.  Theoretical amplitudes and lifetimes of non-radial solar-like oscillations in red giants , 2009, 0906.3951.

[48]  Ž. Ivezić,et al.  ACCEPTED FOR PUBLICATION IN APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 GALACTIC GLOBULAR AND OPEN CLUSTERS IN THE SLOAN DIGITAL SKY SURVEY. II. TEST OF THEORETICAL STELLAR ISOCHRONES , 2022 .

[49]  H. Kjeldsen,et al.  CoRoT sounds the stars: p-mode parameters of Sun-like oscillations on HD 49933 , 2008 .

[50]  Hans Kjeldsen,et al.  TO APPEAR IN APJ LETTERS Preprint typeset using LATEX style emulateapj v. 10/09/06 CORRECTING STELLAR OSCILLATION FREQUENCIES FOR NEAR-SURFACE EFFECTS , 2022 .

[51]  P. Garaud,et al.  Dynamics of the solar tachocline - II. The stratified case , 2008, 0806.2551.

[52]  J. Christensen-Dalsgaard,et al.  The CoRoT evolution and seismic tools activity , 2008, 0805.0977.

[53]  C. Charbonnel,et al.  Angular momentum transport by internal gravity waves - IV. Wave generation by surface convection zone, from the pre-main sequence to the early-AGB in intermediate mass stars , 2008, 0801.4643.

[54]  A. Miglio,et al.  The Liège Oscillation code , 2007, 0712.3474.

[55]  Jørgen Christensen-Dalsgaard,et al.  ASTEC—the Aarhus STellar Evolution Code , 2007, 0710.3114.

[56]  Jørgen Christensen-Dalsgaard,et al.  ADIPLS—the Aarhus adiabatic oscillation package , 2007, 0710.3106.

[57]  Porto,et al.  A new code for automatic determination of equivalent widths: Automatic Routine for line Equivalent widths in stellar Spectra (ARES) , 2007, astro-ph/0703696.

[58]  K. Menou,et al.  Magnetorotational Transport in the Early Sun , 2006, astro-ph/0606358.

[59]  J. Ballot,et al.  Rotation speed and stellar axis inclination from p modes: how CoRoT would see other suns , 2006, astro-ph/0603671.

[60]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[61]  Helioseismic evidence of two solar granulation timescales , 2005 .

[62]  C. Charbonnel,et al.  Influence of Gravity Waves on the Internal Rotation and Li Abundance of Solar-Type Stars , 2005, Science.

[63]  C. Charbonnel,et al.  Hydrodynamical stellar models including rotation, internal gravity waves, and atomic diffusion - I. Formalism and tests on Pop I dwarfs , 2005 .

[64]  S. Mathis,et al.  Transport and mixing in the radiation zones of rotating stars. I. Hydrodynamical processes , 2004, astro-ph/0406418.

[65]  W. Chaplin,et al.  About the rotation of the solar radiative interior , 2004 .

[66]  K. Menou,et al.  Local Axisymmetric Diffusive Stability of Weakly Magnetized, Differentially Rotating, Stratified Fluids , 2004, astro-ph/0402150.

[67]  R. Drimmel,et al.  A three-dimensional Galactic extinction model , 2003, astro-ph/0307273.

[68]  E. Covino,et al.  Further identification of ROSAT all-sky survey sources in Orion , 2003 .

[69]  Laurent Gizon,et al.  Determining the Inclination of the Rotation Axis of a Sun-like Star , 2003 .

[70]  R. Arlt,et al.  Differential rotation decay in the radiative envelopes of CP stars , 2002, astro-ph/0207129.

[71]  W. Chaplin,et al.  Rotation of the solar core from BiSON and LOWL frequency observations , 1999 .

[72]  P. Aguer,et al.  A compilation of charged-particle induced thermonuclear reaction rates , 1999 .

[73]  H. M. Antia,et al.  Helioseismic Studies of Differential Rotation in the Solar Envelope by the Solar Oscillations Investigation Using the Michelson Doppler Imager , 1998 .

[74]  M. McIntyre,et al.  Inevitability of a magnetic field in the Sun's radiative interior , 1998, Nature.

[75]  P. Morel CESAM: A code for stellar evolution calculations , 1997 .

[76]  I. Goldman,et al.  Stellar Turbulent Convection: A Self-consistent Model , 1996 .

[77]  R. Tibshirani,et al.  Generalized additive models for medical research , 1995, Statistical methods in medical research.

[78]  T. Bedding,et al.  Solar-like oscillations in eta Boo , 1994, astro-ph/9411016.

[79]  J. Hawley,et al.  The stability of differentially rotating, weakly magnetized stellar radiative zones , 1994 .

[80]  P. Sturrock,et al.  Evidence for a fundamental period of the sun and its relation to the 154 day complex of periodicities , 1993 .

[81]  D. Gough,et al.  Is It Possible to Determine Whether a Star is Rotating About a Unique Axis , 1993 .

[82]  Timothy M. Brown,et al.  Detection of possible p-mode oscillations on Procyon , 1991 .

[83]  S. Jefferies,et al.  Modeling of solar oscillation power spectra , 1990 .

[84]  J. Harvey High-Resolution Helioseismology , 1985 .

[85]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[86]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .

[87]  G. Backus,et al.  The Resolving Power of Gross Earth Data , 1968 .