A numerical scheme for impact problems

We consider a mechanical system with impact and n degrees of freedom, written in generalized coordinates. The system is not necessarily Lagrangian. The representative point of the system must remain inside a set of constraints K; the boundary of K is three times differentiable. At impact, the tangential component of the impulsion is conserved, while its normal coordinate is reflected and multiplied by a given coefficient of restitution e between 0 and 1. The orthognality is taken with respect to the natural metric in the space of impulsions. We define a numerical scheme which enables us to approximate the solutions of the Cauchy problem: this is an ad hoc scheme which does not require a systematic search for the times of impact. We prove the convergence of this numerical scheme to a solution, which yields also an existence result. Without any a priori estimates, the convergence and the existence are local; with some a priori estimates, the convergence and the existence are proved on intervals depending exclusively on these estimates. This scheme has been implemented with a trivial and a non trivial mass matrix.

[1]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[2]  Manuel D. P. Monteiro Marques,et al.  Dynamics of a particle with damping, friction, and percussional effects , 1995 .

[3]  P. Ballard The Dynamics of Discrete Mechanical Systems with Perfect Unilateral Constraints , 2000 .

[4]  M. Marques Differential Inclusions in Nonsmooth Mechanical Problems , 1993 .

[5]  Laetitia Paoli,et al.  Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d'énergie , 1993 .

[6]  M. Marques,et al.  Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction , 1993 .

[7]  Giuseppe Buttazzo,et al.  On the approximation of the elastic bounce problem on Riemannian manifolds , 1983 .

[8]  Manuel D. P. Monteiro Marques An existence, uniqueness and regularity study of the dynamics of systems with one-dimensional friction , 1994 .

[9]  M. Kunze,et al.  ON THE DISCRETIZATION OF DEGENERATE SWEEPING PROCESSES , 2022 .

[10]  Michele Carriero,et al.  Uniqueness of the one-dimensional bounce problem as a generic property in , 1980 .

[11]  D. Stewart A numerical method for friction problems with multiple contacts , 1996, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[12]  M. Schatzman A class of nonlinear differential equations of second order in time , 1978 .

[13]  Laetitia Paoli Analyse numérique de vibrations avec contraintes unilatérales , 1993 .

[14]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[15]  Aldo Bressan Questioni di regolarità e di unicità del moto in presenza di vincoli olonomi unilaterali , 1959 .

[16]  Danilo Percivale Bounce problem with weak hypotheses of regularity , 1986 .

[17]  M. Schatzman Uniqueness and continuous dependence on data for one-dimensional impact problems , 1998 .

[18]  J. Brilla Trends in applications of pure mathematics to mechanics , 1983 .

[19]  Danilo Percivale,et al.  Uniqueness in the elastic bounce problem, II , 1985 .

[20]  J. Schwartz,et al.  Spectral theory : self adjoint operators in Hilbert space , 1963 .

[21]  D. Stewart Convergence of a Time‐Stepping Scheme for Rigid‐Body Dynamics and Resolution of Painlevé's Problem , 1998 .

[22]  Laetitia Paoli,et al.  Vibrations avec contraintes unilatérales et perte d'énergie aux impacts, en dimension finie , 1993 .

[23]  Laetitia Paoli,et al.  Theoretical and Numerical Study for a Model of Vibrations with Unilateral Constraints , 1995 .

[24]  J. Moreau Liaisons unilatérales sans frottement et chocs inélastiques , 1983 .

[25]  D. Stewart,et al.  AN IMPLICIT TIME-STEPPING SCHEME FOR RIGID BODY DYNAMICS WITH INELASTIC COLLISIONS AND COULOMB FRICTION , 1996 .

[26]  Laetitia Paoli,et al.  Resonance in impact problems , 1998 .

[27]  J. Moreau Evolution problem associated with a moving convex set in a Hilbert space , 1977 .