Sign and area in nodal geometry of Laplace eigenfunctions
暂无分享,去创建一个
[1] Three-spheres theorem for second order elliptic equations , 1995 .
[2] D. H. Hamilton,et al. ON THE AREA DISTORTION BY QUASICONFORMAL MAPPINGS , 1995 .
[3] S. Yau,et al. Lectures on Differential Geometry , 1994 .
[4] L. Ahlfors,et al. Lectures on quasiconformal mappings , 1966 .
[5] Дмитрий Якобсон,et al. Геометрические свойства собственных функций@@@Geometric properties of eigenfunctions , 2001 .
[6] Jochen Brüning,et al. Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators , 1978 .
[7] H. Groemer. Geometric Applications of Fourier Series and Spherical Harmonics , 1996 .
[8] Shmuel Agmon. Unicité et convexité dans les problèmes différentiels , 1966 .
[9] T. Carleman. Extension d'un théorème de liouville , 1926 .
[10] Nikolai Nadirashvili,et al. Metric properties of eigenfunctions of the Laplace operator on manifolds , 1991 .
[11] G. Lu. Covering lemmas and an application to nodal geometry on Riemannian manifolds , 1993 .
[12] M. S. Robertson. The variation of the sign of $V$ for an analytic function $U+iV$ , 1939 .
[13] Eric L. Grinberg. GEOMETRIC APPLICATIONS OF FOURIER SERIES AND SPHERICAL HARMONICS (Encyclopedia of Mathematics and its Applications 61) , 1999 .
[14] Uzy Smilansky,et al. Nodal domains statistics: a criterion for quantum chaos. , 2001, Physical review letters.
[15] C. Fefferman,et al. Growth and geometry of eigenfunctions of the laplacian , 1989 .
[16] B. Muckenhoupt,et al. Nodal geometry on Riemannian manifolds , 1991 .
[17] Igor Kukavica,et al. Quantitative uniqueness for second-order elliptic operators , 1998 .
[18] C. Fefferman,et al. Nodal sets of eigenfunctions on Reimannian manifolds , 1988 .
[19] F. Lin. Nodal sets of solutions of elliptic and parabolic equations , 1991 .
[20] N. Nadirashvili,et al. Quasi-symmetry of $L^p$ norms of eigenfunctions , 2002 .
[21] A. Khovanskii,et al. Generalized Rolle Theorem in R N and C , 1996 .