Sign and area in nodal geometry of Laplace eigenfunctions

The paper deals with asymptotic nodal geometry for the Laplace-Beltrami operator on closed surfaces. Given an eigenfunction f corresponding to a large eigenvalue, we study local asymmetry of the distribution of sign(f) with respect to the surface area. It is measured as follows: take any disc centered at the nodal line {f = 0}, and pick at random a point in this disc. What is the probability that the function assumes a positive value at the chosen point? We show that this quantity may decay logarithmically as the eigenvalue goes to infinity, but never faster than that. In other words, only a mild local asymmetry may appear. The proof combines methods due to Donnelly-Fefferman and Nadirashvili with a new result on harmonic functions in the unit disc.

[1]  Three-spheres theorem for second order elliptic equations , 1995 .

[2]  D. H. Hamilton,et al.  ON THE AREA DISTORTION BY QUASICONFORMAL MAPPINGS , 1995 .

[3]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[4]  L. Ahlfors,et al.  Lectures on quasiconformal mappings , 1966 .

[5]  Дмитрий Якобсон,et al.  Геометрические свойства собственных функций@@@Geometric properties of eigenfunctions , 2001 .

[6]  Jochen Brüning,et al.  Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators , 1978 .

[7]  H. Groemer Geometric Applications of Fourier Series and Spherical Harmonics , 1996 .

[8]  Shmuel Agmon Unicité et convexité dans les problèmes différentiels , 1966 .

[9]  T. Carleman Extension d'un théorème de liouville , 1926 .

[10]  Nikolai Nadirashvili,et al.  Metric properties of eigenfunctions of the Laplace operator on manifolds , 1991 .

[11]  G. Lu Covering lemmas and an application to nodal geometry on Riemannian manifolds , 1993 .

[12]  M. S. Robertson The variation of the sign of $V$ for an analytic function $U+iV$ , 1939 .

[13]  Eric L. Grinberg GEOMETRIC APPLICATIONS OF FOURIER SERIES AND SPHERICAL HARMONICS (Encyclopedia of Mathematics and its Applications 61) , 1999 .

[14]  Uzy Smilansky,et al.  Nodal domains statistics: a criterion for quantum chaos. , 2001, Physical review letters.

[15]  C. Fefferman,et al.  Growth and geometry of eigenfunctions of the laplacian , 1989 .

[16]  B. Muckenhoupt,et al.  Nodal geometry on Riemannian manifolds , 1991 .

[17]  Igor Kukavica,et al.  Quantitative uniqueness for second-order elliptic operators , 1998 .

[18]  C. Fefferman,et al.  Nodal sets of eigenfunctions on Reimannian manifolds , 1988 .

[19]  F. Lin Nodal sets of solutions of elliptic and parabolic equations , 1991 .

[20]  N. Nadirashvili,et al.  Quasi-symmetry of $L^p$ norms of eigenfunctions , 2002 .

[21]  A. Khovanskii,et al.  Generalized Rolle Theorem in R N and C , 1996 .