Unsupervised Visual Domain Adaptation: A Deep Max-Margin Gaussian Process Approach

For unsupervised domain adaptation, the target domain error can be provably reduced by having a shared input representation that makes the source and target domains indistinguishable from each other. Very recently it has been shown that it is not only critical to match the marginal input distributions, but also align the output class distributions. The latter can be achieved by minimizing the maximum discrepancy of predictors. In this paper, we take this principle further by proposing a more systematic and effective way to achieve hypothesis consistency using Gaussian processes (GP). The GP allows us to induce a hypothesis space of classifiers from the posterior distribution of the latent random functions, turning the learning into a large-margin posterior separation problem, significantly easier to solve than previous approaches based on adversarial minimax optimization. We formulate a learning objective that effectively influences the posterior to minimize the maximum discrepancy. This is shown to be equivalent to maximizing margins and minimizing uncertainty of the class predictions in the target domain. Empirical results demonstrate that our approach leads to state-to-the-art performance superior to existing methods on several challenging benchmarks for domain adaptation.

[1]  Tatsuya Harada,et al.  Asymmetric Tri-training for Unsupervised Domain Adaptation , 2017, ICML.

[2]  Kate Saenko,et al.  VisDA: The Visual Domain Adaptation Challenge , 2017, ArXiv.

[3]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[4]  Deli Zhao,et al.  Scalable Gaussian Process Regression Using Deep Neural Networks , 2015, IJCAI.

[5]  Anton Konushin,et al.  Evaluation of Traffic Sign Recognition Methods Trained on Synthetically Generated Data , 2013, ACIVS.

[6]  Yan Huang,et al.  Aligning Infinite-Dimensional Covariance Matrices in Reproducing Kernel Hilbert Spaces for Domain Adaptation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[7]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[8]  Edwin Lughofer,et al.  Central Moment Discrepancy (CMD) for Domain-Invariant Representation Learning , 2017, ICLR.

[9]  Simon Haykin,et al.  GradientBased Learning Applied to Document Recognition , 2001 .

[10]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[11]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[12]  Koby Crammer,et al.  Analysis of Representations for Domain Adaptation , 2006, NIPS.

[13]  Daniel Cremers,et al.  Associative Domain Adaptation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[14]  Yoshua Bengio,et al.  Semi-supervised Learning by Entropy Minimization , 2004, CAP.

[15]  Ben Taskar,et al.  Max-Margin Markov Networks , 2003, NIPS.

[16]  Barbara Caputo,et al.  Boosting Domain Adaptation by Discovering Latent Domains , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[17]  Xiaojin Zhu,et al.  Introduction to Semi-Supervised Learning , 2009, Synthesis Lectures on Artificial Intelligence and Machine Learning.

[18]  David J. Kriegman,et al.  Image to Image Translation for Domain Adaptation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[19]  Edwin V. Bonilla,et al.  Scalable Inference for Gaussian Process Models with Black-Box Likelihoods , 2015, NIPS.

[20]  Kate Saenko,et al.  Deep CORAL: Correlation Alignment for Deep Domain Adaptation , 2016, ECCV Workshops.

[21]  Vladimir Pavlovic,et al.  PUnDA: Probabilistic Unsupervised Domain Adaptation for Knowledge Transfer Across Visual Categories , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[22]  Pedro H. O. Pinheiro,et al.  Unsupervised Domain Adaptation with Similarity Learning , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[23]  Victor S. Lempitsky,et al.  Unsupervised Domain Adaptation by Backpropagation , 2014, ICML.

[24]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[25]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[26]  Shiguang Shan,et al.  Duplex Generative Adversarial Network for Unsupervised Domain Adaptation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[27]  Jan Kautz,et al.  Unsupervised Image-to-Image Translation Networks , 2017, NIPS.

[28]  Koby Crammer,et al.  A theory of learning from different domains , 2010, Machine Learning.

[29]  Johannes Stallkamp,et al.  The German Traffic Sign Recognition Benchmark: A multi-class classification competition , 2011, The 2011 International Joint Conference on Neural Networks.

[30]  Pascal Fua,et al.  Residual Parameter Transfer for Deep Domain Adaptation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[31]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[32]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[33]  Alexei A. Efros,et al.  Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[34]  Brian C. Lovell,et al.  Unsupervised Domain Adaptation by Domain Invariant Projection , 2013, 2013 IEEE International Conference on Computer Vision.

[35]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Rama Chellappa,et al.  Domain adaptation for object recognition: An unsupervised approach , 2011, 2011 International Conference on Computer Vision.

[37]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Konstantinos G. Derpanis,et al.  The Bhattacharyya Measure , 2008 .

[39]  Trevor Darrell,et al.  Adapting Visual Category Models to New Domains , 2010, ECCV.

[40]  Kristen Grauman,et al.  Connecting the Dots with Landmarks: Discriminatively Learning Domain-Invariant Features for Unsupervised Domain Adaptation , 2013, ICML.

[41]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[42]  Motoaki Kawanabe,et al.  Direct Importance Estimation with Model Selection and Its Application to Covariate Shift Adaptation , 2007, NIPS.

[43]  Michael I. Jordan,et al.  Deep Transfer Learning with Joint Adaptation Networks , 2016, ICML.

[44]  Trevor Darrell,et al.  Deep Domain Confusion: Maximizing for Domain Invariance , 2014, CVPR 2014.

[45]  Trevor Darrell,et al.  Adversarial Discriminative Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[47]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[48]  Carlos D. Castillo,et al.  Generate to Adapt: Aligning Domains Using Generative Adversarial Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[49]  Vishal Patel,et al.  Domain Adaptive Subspace Clustering , 2016, BMVC.

[50]  George Trigeorgis,et al.  Domain Separation Networks , 2016, NIPS.

[51]  Mengjie Zhang,et al.  Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation , 2016, ECCV.

[52]  Philip S. Yu,et al.  Transfer Joint Matching for Unsupervised Domain Adaptation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Yu-Chiang Frank Wang,et al.  Unsupervised Domain Adaptation with Imbalanced Cross-Domain Data , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[54]  Gabriela Csurka,et al.  A Comprehensive Survey on Domain Adaptation for Visual Applications , 2017, Domain Adaptation in Computer Vision Applications.

[55]  Andrea Vedaldi,et al.  Learning multiple visual domains with residual adapters , 2017, NIPS.

[56]  Quinn Jones,et al.  Few-Shot Adversarial Domain Adaptation , 2017, NIPS.

[57]  Andrew Gordon Wilson,et al.  Deep Kernel Learning , 2015, AISTATS.

[58]  Dumitru Erhan,et al.  Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[59]  Andrew Y. Ng,et al.  Reading Digits in Natural Images with Unsupervised Feature Learning , 2011 .

[60]  Tatsuya Harada,et al.  Maximum Classifier Discrepancy for Unsupervised Domain Adaptation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[61]  Jing Zhang,et al.  Joint Geometrical and Statistical Alignment for Visual Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[62]  Vishal M. Patel,et al.  Adversarial domain adaptive subspace clustering , 2018, 2018 IEEE 4th International Conference on Identity, Security, and Behavior Analysis (ISBA).

[63]  Qilong Wang,et al.  Mind the Class Weight Bias: Weighted Maximum Mean Discrepancy for Unsupervised Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[64]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[65]  Nicolas Courty,et al.  Joint distribution optimal transportation for domain adaptation , 2017, NIPS.

[66]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[67]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[68]  Zhuowen Tu,et al.  Max-Margin Multiple-Instance Dictionary Learning , 2013, ICML.

[69]  Lior Wolf,et al.  One-Sided Unsupervised Domain Mapping , 2017, NIPS.

[70]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[71]  Ming-Yu Liu,et al.  Coupled Generative Adversarial Networks , 2016, NIPS.

[72]  Shiguang Shan,et al.  Bi-Shifting Auto-Encoder for Unsupervised Domain Adaptation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[73]  Shih-Fu Chang,et al.  Deep Transfer Network: Unsupervised Domain Adaptation , 2015, ArXiv.

[74]  Michael I. Jordan,et al.  Learning Transferable Features with Deep Adaptation Networks , 2015, ICML.

[75]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.