Some extensions of multivariate sliced inverse regression

Multivariate sliced inverse regression (SIR) is a method for achieving dimension reduction in regression problems when the outcome variable y and the regressor x are both assumed to be multidimensional. In this paper, we extend the existing approaches, based on the usual SIR I which only uses the inverse regression curve, to methods using properties of the inverse conditional variance. Contrary to the existing ones, these new methods are not blind for symmetric dependencies and rely on the SIR II or SIRα. We also propose their corresponding pooled slicing versions. We illustrate the usefulness of these approaches on simulation studies.

[1]  Tailen Hsing,et al.  Nearest neighbor inverse regression , 1999 .

[2]  Ker-Chau Li,et al.  On almost Linearity of Low Dimensional Projections from High Dimensional Data , 1993 .

[3]  Kerby Shedden,et al.  Dimension Reduction for Multivariate Response Data , 2003 .

[4]  Jérôme Saracco,et al.  An asymptotic theory for sliced inverse regression , 1997 .

[5]  Xuming He,et al.  A chi-square test for dimensionality with non-Gaussian data , 2004 .

[6]  R. Cook,et al.  Estimating the structural dimension of regressions via parametric inverse regression , 2001 .

[7]  R. Dennis Cook,et al.  K-Means Inverse Regression , 2004, Technometrics.

[8]  James R. Schott,et al.  Determining the Dimensionality in Sliced Inverse Regression , 1994 .

[9]  S. Weisberg,et al.  Comments on "Sliced inverse regression for dimension reduction" by K. C. Li , 1991 .

[10]  Ker-Chau Li,et al.  Slicing Regression: A Link-Free Regression Method , 1991 .

[11]  J. Saracco,et al.  AN ASYMPTOTIC THEORY FOR SIRα METHOD , 2003 .

[12]  T. Kötter,et al.  Asymptotic results for sliced inverse regression , 1994 .

[13]  Jérôme Saracco,et al.  Sliced Inverse Regression (SIR): An Appraisal of Small Sample Alternatives to Slicing , 1996 .

[14]  Jérôme Saracco,et al.  Two Cross Validation Criteria for SIRα and PSIRα methods in view of prediction , 2003, Comput. Stat..

[15]  R. Cook,et al.  Reweighting to Achieve Elliptically Contoured Covariates in Regression , 1994 .

[16]  K. Fang,et al.  Asymptotics for kernel estimate of sliced inverse regression , 1996 .

[17]  Raymond J. Carroll,et al.  Measurement Error Regression with Unknown Link: Dimension Reduction and Data Visualization , 1992 .

[18]  Jérôme Saracco,et al.  POOLED SLICING METHODS VERSUS SLICING METHODS , 2001 .

[19]  Lixing Zhu,et al.  Asymptotics of sliced inverse regression , 1995 .

[20]  L. Ferré Determining the Dimension in Sliced Inverse Regression and Related Methods , 1998 .

[21]  E. Bura Dimension reduction via parametric inverse regression , 1997 .

[22]  Ker-Chau Li Sliced inverse regression for dimension reduction (with discussion) , 1991 .

[23]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .