Convergence of multimodal sensory pathways to the mushroom body calyx in Drosophila melanogaster

Detailed structural analyses of the mushroom body which plays critical roles in olfactory learning and memory revealed that it is directly connected with multiple primary sensory centers in Drosophila. Connectivity patterns between the mushroom body and primary sensory centers suggest that each mushroom body lobe processes information on different combinations of multiple sensory modalities. This finding provides a novel focus of research by Drosophila genetics for perception of the external world by integrating multisensory signals.

[1]  N. Strausfeld,et al.  Multimodal efferent and recurrent neurons in the medial lobes of cockroach mushroom bodies , 1999, The Journal of comparative neurology.

[2]  G. Rubin,et al.  Tools for neuroanatomy and neurogenetics in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[3]  Andreas S. Thum,et al.  The Neural Substrate of Spectral Preference in Drosophila , 2008, Neuron.

[4]  A. Fiala,et al.  Punishment Prediction by Dopaminergic Neurons in Drosophila , 2005, Current Biology.

[5]  T. Godenschwege,et al.  Invertebrate Synapsins: A Single Gene Codes for Several Isoforms in Drosophila , 1996, The Journal of Neuroscience.

[6]  Kristin Scott,et al.  Gustatory Learning and Processing in the Drosophila Mushroom Bodies , 2015, The Journal of Neuroscience.

[7]  G. Rubin,et al.  The neuronal architecture of the mushroom body provides a logic for associative learning , 2014, eLife.

[8]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster , 2004, Cell and Tissue Research.

[9]  M. Stopfer Central processing in the mushroom bodies. , 2014, Current opinion in insect science.

[10]  S. Farris Tritocerebral tract input to the insect mushroom bodies. , 2008, Arthropod structure & development.

[11]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[12]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[13]  M. Mizunami,et al.  Visual and olfactory input segregation in the mushroom body calyces in a basal neopteran, the American cockroach. , 2012, Arthropod structure & development.

[14]  R. Davis,et al.  Tripartite mushroom body architecture revealed by antigenic markers. , 1998, Learning & memory.

[15]  M. Stopfer,et al.  Dye fills reveal additional olfactory tracts in the protocerebrum of wild‐type Drosophila , 2012, The Journal of comparative neurology.

[16]  Kei Ito,et al.  Organization of antennal lobe‐associated neurons in adult Drosophila melanogaster brain , 2012, The Journal of comparative neurology.

[17]  Richard Axel,et al.  Spatial Representation of the Glomerular Map in the Drosophila Protocerebrum , 2002, Cell.

[18]  Zhiyuan Lu,et al.  Different classes of input and output neurons reveal new features in microglomeruli of the adult Drosophila mushroom body calyx , 2012, The Journal of comparative neurology.

[19]  Lindsey J. Macpherson,et al.  Temperature representation in the Drosophila brain , 2015, Nature.

[20]  Ronald L. Davis,et al.  Functional neuroanatomy of Drosophila olfactory memory formation , 2014, Learning & memory.

[21]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[22]  Charles S. Zuker,et al.  The Coding of Temperature in the Drosophila Brain , 2011, Cell.

[23]  Julie H. Simpson,et al.  A Systematic Nomenclature for the Insect Brain , 2014, Neuron.

[24]  Zhefeng Gong,et al.  Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. , 2009, Learning & memory.

[25]  G. Rubin,et al.  Shared mushroom body circuits underlie visual and olfactory memories in Drosophila , 2014, eLife.

[26]  U. Homberg,et al.  Topographically distinct visual and olfactory inputs to the mushroom body in the Swallowtail butterfly, Papilio xuthus , 2015, The Journal of comparative neurology.

[27]  Pavan Ramdya,et al.  Complementary Function and Integrated Wiring of the Evolutionarily Distinct Drosophila Olfactory Subsystems , 2011, The Journal of Neuroscience.

[28]  Holger Kessler,et al.  Maps to models , 2004 .

[29]  M. Heisenberg,et al.  Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.

[30]  Tim Tully,et al.  Associative Learning Disrupted by Impaired Gs Signaling in Drosophila Mushroom Bodies , 1996, Science.

[31]  A. Borst,et al.  Neuronal architecture of the antennal lobe in Drosophila melanogaster , 1990, Cell and Tissue Research.

[32]  Yoshinori Aso,et al.  Direct neural pathways convey distinct visual information to Drosophila mushroom bodies , 2016, eLife.

[33]  G. Rubin,et al.  Refinement of Tools for Targeted Gene Expression in Drosophila , 2010, Genetics.

[34]  Yoshinori Aso,et al.  The Mushroom Body of Adult Drosophila Characterized by GAL4 Drivers , 2009, Journal of neurogenetics.

[35]  M. Heisenberg Mushroom body memoir: from maps to models , 2003, Nature Reviews Neuroscience.

[36]  Angelique C Paulk,et al.  Higher order visual input to the mushroom bodies in the bee, Bombus impatiens. , 2008, Arthropod structure & development.

[37]  W. Gronenberg Subdivisions of hymenopteran mushroom body calyces by their afferent supply , 2001, The Journal of comparative neurology.

[38]  Zhiyuan Lu,et al.  Mapping chromatic pathways in the Drosophila visual system. , 2016, The Journal of comparative neurology.

[39]  G. Rubin,et al.  Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila , 2014, eLife.

[40]  M Heisenberg,et al.  Drosophila mushroom bodies are dispensable for visual, tactile, and motor learning. , 1998, Learning & memory.

[41]  R. Menzel,et al.  A new ascending sensory tract to the calyces of the honeybee mushroom body, the subesophageal‐calycal tract , 2003, The Journal of comparative neurology.

[42]  Kei Ito,et al.  Neuronal assemblies of the Drosophila mushroom body , 2008, The Journal of comparative neurology.

[43]  John Tyler Bonner,et al.  Morphogenesis , 1965, The Physics of Living Matter: Space, Time and Information.