State boundary surface of a hypoplastic model for clays

Abstract The paper studies some consequences of the mathematical formulation of the recently proposed hypoplastic model for clays. Particular attention is paid to the question if the hypoplastic model predicts existence of the state boundary surface, defined as a boundary of all admissible states in the stress-void ratio space. It is shown that the model enables us to derive an explicit formulation of asymptotic (swept-out-memory) states in the stress-void ratio space, which constitute so-called swept-out-memory surface. Further it is demonstrated that the swept-out-memory surface is a close approximation of the state boundary surface although, in general, they do not coincide. Finally, the influence of constitutive parameters on the shape of the swept-out-memory surface is studied. For parameters reasonable for fine-grained soils its shape is similar to the state boundary surface of the Modified Cam clay model.

[1]  Dimitrios Kolymbas,et al.  An outline of hypoplasticity , 1991, Archive of Applied Mechanics.

[2]  K. Nübel,et al.  Examples of finite element calculations with the hypoplastic law , 2000 .

[3]  A VISCO-HYPOPLASTIC CONSTITUTIVE RELATION FOR SOFT SOILS , 2004 .

[4]  S. E. Stallebrass,et al.  The development and evaluation of a constitutive model for the prediction of ground movements in overconsolidated clay , 1997 .

[5]  K. Roscoe,et al.  ON THE GENERALIZED STRESS-STRAIN BEHAVIOUR OF WET CLAY , 1968 .

[6]  P. V. Wolffersdorff,et al.  A hypoplastic relation for granular materials with a predefined limit state surface , 1996 .

[7]  Wei Wu,et al.  BEYOND FAILURE IN GRANULAR MATERIALS , 1997 .

[8]  Dimitrios Kolymbas,et al.  Computer-aided design of constitutive laws , 1991 .

[9]  E. Lavernia,et al.  An experimental investigation , 1992, Metallurgical and Materials Transactions A.

[10]  C. Tamagnini,et al.  An Evaluation of Different Constitutive Models to Predict the Directional Response of a Reconstituted Fine-Grained Soil , 2006 .

[11]  Gioacchino Viggiani,et al.  Evaluation of different strategies for the integration of hypoplastic constitutive equations: Application to the CLoE model , 2000 .

[12]  Gioacchino Viggiani,et al.  On the incremental behaviour of granular soils , 2002 .

[13]  D. Maš́ın,et al.  A hypoplastic constitutive model for clays , 2005 .

[14]  Paul W. Mayne,et al.  K o - OCR Relationships in Soil , 1982 .

[15]  F. Thomson Storage and Flow of Particulate Solids , 1997 .

[16]  Dimitrios Kolymbas,et al.  Constitutive Modelling of Granular Materials , 2000 .

[17]  Gioacchino Viggiani,et al.  A general formulation of hypoplasticity , 2004 .

[18]  R. Michalowski Coefficient of Earth Pressure at Rest , 2005, Geotechnical Correlations for Soils and Rocks.

[19]  R. Chambon Une classe de lois de comportement incrémentalement nonlinéaires pour les sols non visqueux, résolution de quelques problèmes de cohérence , 1989 .

[20]  Federica Cotecchia,et al.  A general framework for the mechanical behaviour of clays , 2000 .

[21]  Robert Charlier,et al.  CLoE, a new rate-type constitutive model for geomaterials theoretical basis and implementation , 1994 .

[22]  A. Schofield,et al.  Critical State Soil Mechanics , 1968 .

[23]  Jacek Tejchman,et al.  A "CLASS A" PREDICTION OF THE BEARING CAPACITY OF PLANE STRAIN FOOTINGS ON SAND , 1999 .

[24]  Gioacchino Viggiani,et al.  A review of two different approaches to hypoplasticity , 2000 .

[25]  R. Butterfield,et al.  A NATURAL COMPRESSION LAW FOR SOILS (AN ADVANCE ON E-LOG P') , 1979 .

[26]  G. Gudehus,et al.  Finite Elements in Geomechanics , 1978 .

[27]  Jacques Desrues,et al.  CLoE a new rate-type constitutive model for geomaterials theoretical basis and implementation : International Journal for Numerical & Analytical Methods in Geomechanics, 18(4), 1994, pp 253–278 , 1994 .

[28]  Gioacchino Viggiani,et al.  Directional response of a reconstituted fine‐grained soil—Part I: experimental investigation , 2006 .

[29]  Gholamreza Mesri,et al.  The coefficient of earth pressure at rest , 1993 .

[30]  Yannis F. Dafalias,et al.  BOUNDING SURFACE PLASTICITY, I: MATHEMATICAL FOUNDATION AND HYPOPLASTICITY , 1986 .

[31]  Gioacchino Viggiani,et al.  Directional response of a reconstituted fine‐grained soil—Part II: performance of different constitutive models , 2006 .

[32]  R Cudmani,et al.  The cavity expansion problem for the interpretation of cone penetration and pressuremeter tests , 2001 .

[33]  G. Gudehus A COMPREHENSIVE CONSTITUTIVE EQUATION FOR GRANULAR MATERIALS , 1996 .

[34]  Dimitrios Kolymbas,et al.  Hypoplasticity for soils with low friction angles , 2004 .

[35]  D. Mašín,et al.  State Boundary Surface in Hypoplasticity , 2006 .

[36]  T. Doanh,et al.  Theoretical analysis of strain response envelopes using incrementally non-linear constitutive equations , 1998 .