3D Object Retrieval with Parametric Templates

We propose a 3D object retrieval system which uses parametric templates as prior knowledge for the retrieval. A parametric template represents an object-domain and a semantic concept like 'chair' or 'plane' or a more specific concept like 'dining-char' or 'biplane'. The template can be specified at a general or specific level and can even equal actual retrieved objects. The parametric template is composed of several input parameters and an operation chain which constructs an object. Different parameter combinations lead to different object instances. We combine and evaluate a paramteric template with different descriptors. Our results show that the usage of parametric templates can raise the retrieval performance significantly.

[1]  Ghassan Hamarneh,et al.  Prior Knowledge for Part Correspondence , 2011, Comput. Graph. Forum.

[2]  Paul Suetens,et al.  Feature detection on 3D face surfaces for pose normalisation and recognition , 2010, 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS).

[3]  Bülent Sankur,et al.  Similarity Learning for 3D Object Retrieval Using Relevance Feedback and Risk Minimization , 2010, International Journal of Computer Vision.

[4]  Sven Havemann,et al.  Generative 3D models: a key to more information within less bandwidth at higher quality , 2005, Web3D '05.

[5]  Hans-Peter Seidel,et al.  A Correlated Parts Model for Object Detection in Large 3D Scans , 2013, Comput. Graph. Forum.

[6]  Pat Hanrahan,et al.  Example-based synthesis of 3D object arrangements , 2012, ACM Trans. Graph..

[7]  Bo Li,et al.  3D model retrieval using hybrid features and class information , 2013, Multimedia Tools and Applications.

[8]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[9]  N. Mitra,et al.  Exploration of continuous variability in collections of 3D shapes , 2011, SIGGRAPH 2011.

[10]  Dejan V. Vranic DESIRE: a composite 3D-shape descriptor , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[11]  Hans-Peter Seidel,et al.  Exploring Shape Variations by 3D‐Model Decomposition and Part‐based Recombination , 2012, Comput. Graph. Forum.

[12]  Daniela Giorgi,et al.  3D Classification Via Structural Prototypes , 2007, SAMT.

[13]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[14]  Xindong Wu,et al.  3-D Object Retrieval With Hausdorff Distance Learning , 2014, IEEE Transactions on Industrial Electronics.

[15]  Ron Meir,et al.  Semantic-oriented 3d shape retrieval using relevance feedback , 2005, The Visual Computer.

[16]  Bülent Sankur,et al.  3D Model Retrieval Using Probability Density-Based Shape Descriptors , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Dong Xu,et al.  3D Shape Retrieval Integrated with Classification Information , 2007, Fourth International Conference on Image and Graphics (ICIG 2007).

[18]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[19]  D. Cohen-Or,et al.  Style-content separation by anisotropic part scales , 2010, ACM Trans. Graph..

[20]  Julien Perret,et al.  The FL-system: a functional L-system for procedural geometric modeling , 2005, The Visual Computer.

[21]  Luc Van Gool,et al.  Hough Transform and 3D SURF for Robust Three Dimensional Classification , 2010, ECCV.

[22]  Karthik Ramani,et al.  SVM-based Semantic Clustering and Retrieval of a 3D Model Database , 2005 .

[23]  Sven J. Dickinson,et al.  Skeleton based shape matching and retrieval , 2003, 2003 Shape Modeling International..

[24]  Niloy J. Mitra,et al.  ShapeSynth: Parameterizing model collections for coupled shape exploration and synthesis , 2014, Comput. Graph. Forum.

[25]  Remco C. Veltkamp,et al.  A survey of content based 3D shape retrieval methods , 2004, Proceedings Shape Modeling Applications, 2004..

[26]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[27]  Ioannis Pratikakis,et al.  PANORAMA: A 3D Shape Descriptor Based on Panoramic Views for Unsupervised 3D Object Retrieval , 2010, International Journal of Computer Vision.

[28]  Sven Havemann,et al.  Generative mesh modeling , 2005 .

[29]  Kostas Daniilidis,et al.  Object Detection from Large-Scale 3D Datasets Using Bottom-Up and Top-Down Descriptors , 2008, ECCV.

[30]  Luc Van Gool,et al.  Procedural Modeling for Digital Cultural Heritage , 2009, EURASIP J. Image Video Process..

[31]  Tobias Schreck,et al.  Histograms of Oriented Gradients for 3D Object Retrieval , 2010 .

[32]  Marcin Novotni,et al.  3D zernike descriptors for content based shape retrieval , 2003, SM '03.

[33]  Dieter W. Fellner,et al.  Generative Object Definition and Semantic Recognition , 2011, 3DOR@Eurographics.

[34]  Yosi Keller,et al.  Scale-Invariant Features for 3-D Mesh Models , 2012, IEEE Transactions on Image Processing.

[35]  David P. Dobkin,et al.  A search engine for 3D models , 2003, TOGS.

[36]  James Arvo,et al.  Creating generative models from range images , 1999, SIGGRAPH.

[37]  H. Seidel,et al.  A connection between partial symmetry and inverse procedural modeling , 2010, SIGGRAPH 2010.

[38]  Andrea Fusiello,et al.  A Bag of Words Approach for 3D Object Categorization , 2009, MIRAGE.

[39]  Ming Ouhyoung,et al.  On Visual Similarity Based 3D Model Retrieval , 2003, Comput. Graph. Forum.

[40]  Stephen DiVerdi,et al.  Learning part-based templates from large collections of 3D shapes , 2013, ACM Trans. Graph..

[41]  Zhang Xiong,et al.  3D Object Retrieval With Multitopic Model Combining Relevance Feedback and LDA Model , 2015, IEEE Transactions on Image Processing.